Four new stoichiometrically equivalent quaternary scandium selenites, ASc(SeO3)2 (A = Na, K, Rb, and Cs) have been hydrothermally synthesized using A2CO3, Sc(NO3)3·xH2O (or ScO3), and SeO2 as starting materials. All four materials share similar bond networks that are composed of corner-shared distorted ScO6 octahedra and SeO3 trigonal pyramids. However, each material reveals different frameworks and centricities. Detailed structural analysis suggests that the structural variation is attributed to the difference in size and subsequent coordination number for the alkali metal cations. Powder second-harmonic generation (SHG) measurements on noncentrosymmetric (NCS) RbSc(SeO3)2 show that the compound has an SHG efficiency similar to that of (NH4)H2PO4. The observed SHG efficiency is due to the remaining net polarization after cancellation of oppositely aligned moments for SeO3 and ScO6 groups. Thorough characterizations such as spectroscopic, thermal, and elemental analyses for the new materials are presented as are dipole moment and out-of-center distortion calculations.
ObjectiveThe aims of the Korean Neuro-Trauma Data Bank System (KNTDBS) are to evaluate and improve treatment outcomes for brain trauma, prevent trauma, and provide data for research. Our purpose was to examine the mortality rates following traumatic brain injury (TBI) in a retrospective study and to investigate the sociodemographic variables, characteristics, and causes of TBI-related death based on data from the KNTDBS.MethodsFrom 2010 to 2014, we analyzed the data of 2617 patients registered in the KNTDBS. The demographic characteristics of patients with TBI were investigated. We divided patients into 2 groups, survivors and nonsurvivors, and compared variables between the groups to investigate variables that are related to death after TBI. We also analyzed variables related to the interval between TBI and death, mortality by region, and cause of death in the nonsurvivor group.ResultsThe frequency of TBI in men was higher than that in women. With increasing age of the patients, the incidence of TBI also increased. Among 2617 patients, 688 patients (26.2%) underwent surgical treatment and 125 patients (4.7%) died. The age distributions of survivors vs. nonsurvivor groups and mortality rates according the severity of the brain injury, surgical treatment, and initial Glasgow Coma Scale (GCS) scores were statistically significantly different. Among 125 hospitalized nonsurvivors, 70 patients (56%) died within 7 days and direct brain damage was the most common cause of death (80.8%). The time interval from TBI to death differed depending on the diagnosis, surgical or nonsurgical treatment, severity of brain injury, initial GCS score, and cause of death, and this difference was statistically significant.ConclusionUsing the KNTDBS, we identified epidemiology, mortality, and various factors related to nonsurvival. Building on our study, we should make a conscious effort to increase the survival duration and provide rapid and adequate treatment for TBI patients.
Three new mixed metal selenium oxides materials, Bi2(SeO3)2(SeO4), Bi2(TeO3)2(SeO4), and Bi(SeO3)(HSeO3), have been synthesized by hydrothermal and solid-state reactions using Bi(NO3)3·5H2O, SeO2 (or TeO2), H2SeO4, and Bi2O3 as reagents. The reported materials have been structurally characterized by single crystal X-ray diffraction. While Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) are crystallographically centrosymmetric (CS), Bi(SeO3)(HSeO3) crystallizes in a noncentrosymmetric (NCS) space group. The isostructural Bi2(SeO3)2(SeO4) and Bi2(TeO3)2(SeO4) exhibit three-dimensional framework structures that are composed of BiO6, Se(4+)O3 (or Te(4+)O3), and Se(6+)O4 polyhedra. However, Bi(SeO3)(HSeO3) exhibits corrugated layers that are composed of BiO5, Se(4+)O3, and Se(4+)O2(OH) polyhedra. All three materials contain local asymmetric coordination environments attributable to the lone pairs on the Bi(3+), Se(4+), and/or Te(4+) cations. Powder second-harmonic generation (SHG) measurements on NCS Bi(SeO3)(HSeO3) using 1064 nm radiation indicate that the material has a SHG efficiency of approximately 20 times that of α-SiO2 and is not phase-matchable (type 1). The origin and magnitude of the SHG efficiency of Bi(SeO3)(HSeO3) is explained by determining the net direction of the polarizations arising from individual asymmetric polyhedra. Infrared spectroscopy, thermal analysis, elemental analysis, and dipole moment calculations for the reported materials are also presented.
Both single crystals and pure bulk phases of three new scandium selenium/tellurium oxides, Sc2(SeO3)2(SeO4), Sc2(TeO3)(SeO3)(SeO4), and Sc2(TeO3)3, have been synthesized through hydrothermal and solid-state reactions. X-ray diffractions were used to determine the structures and confirm the phase purities of the reported materials. Isostructural Sc2(SeO3)2(SeO4) and Sc2(TeO3)(SeO3)(SeO4) reveal three-dimensional frameworks with ScO7 pentagonal bipyramids, SeO3 (and TeO3) trigonal pyramids, and SeO4 tetrahedra. A novel ternary scandium tellurite, Sc2(TeO3)3, also shows a three-dimensional framework that is composed of ScO6 octahedra, ScO7-capped octahedra, and TeO3 trigonal pyramids. All three materials accommodate local asymmetric coordination moieties owing to the lone pairs on Se(4+) and Te(4+) cations. The effect of coordination environments of constituent cations on the frameworks, dimensionalities, and centricities of products is discussed. Thorough characterizations including elemental analyses, infrared and UV-vis diffuse reflectance spectroscopies, thermal analyses, and dipole moment calculations for the reported materials are reported. Crystal data: Sc2(SeO3)2(SeO4), monoclinic, space group P21/c (No. 14), a = 6.5294(2) Å, b = 10.8557(4) Å, c = 12.6281(6) Å, β = 103.543(3)°, V = 870.21(6) Å(3), and Z = 4; Sc2(TeO3)(SeO3)(SeO4), monoclinic, space group P21/c (No. 14), a = 6.5345(12) Å, b = 10.970(2) Å, c = 12.559(2) Å, β = 102.699(10)°, V = 878.3(6) Å(3), and Z = 4; Sc2(TeO3)3, monoclinic, space group P21/n (No. 14), a = 5.2345(3) Å, b = 24.3958(15) Å, c = 6.8636(4) Å, β = 106.948(2)°, V = 838.42(9) Å(3), and Z = 4.
ObjectiveTo determine whether the use of contrast enhancement (especially its extent) predicts malignant brain edema after intra-arterial thrombectomy (IAT) in patients with acute ischemic stroke.MethodsWe reviewed the records of patients with acute ischemic stroke who underwent IAT for occlusion of the internal carotid artery or the middle cerebral artery between January 2012 and March 2015. To estimate the extent of contrast enhancement (CE), we used the contrast enhancement area ratio (CEAR)-i.e., the ratio of the CE to the area of the hemisphere, as noted on immediate non-enhanced brain computed tomography (NECT) post-IAT. Patients were categorized into two groups based on the CEAR values being either greater than or less than 0.2.ResultsA total of 39 patients were included. Contrast enhancement was found in 26 patients (66.7%). In this subgroup, the CEAR was greater than 0.2 in 7 patients (18%) and less than 0.2 in the other 19 patients (48.7%). On univariate analysis, both CEAR ≥0.2 and the presence of subarachnoid hemorrhage were significantly associated with progression to malignant brain edema (p<0.001 and p=0.004), but on multivariate analysis, only CEAR ≥0.2 showed a statistically significant association (p=0.019). In the group with CEAR ≥0.2, the time to malignant brain edema was shorter (p=0.039) than in the group with CEAR <0.2. Clinical functional outcomes, based on the modified Rankin scale, were also significantly worse in patients with CEAR ≥0.2 (p=0.003)ConclusionThe extent of contrast enhancement as noted on NECT scans obtained immediately after IAT could be predictive of malignant brain edema and a poor clinical outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.