Energy disaggregation, or nonintrusive load monitoring (NILM), is a technology for separating a household’s aggregate electricity consumption information. Although this technology was developed in 1992, its practical usage and mass deployment have been rather limited, possibly because the commonly used datasets are not adequate for NILM research. In this study, we report the findings from a newly collected dataset that contains 10 Hz sampling data for 58 houses. The dataset not only contains the aggregate measurements, but also individual appliance measurements for three types of appliances. By applying three classification algorithms (vanilla DNN (Deep Neural Network), ML (Machine Learning) with feature engineering, and CNN (Convolutional Neural Network) with hyper-parameter tuning) and a recent regression algorithm (Subtask Gated Network) to the new dataset, we show that NILM performance can be significantly limited when the data sampling rate is too low or when the number of distinct houses in the dataset is too small. The well-known NILM datasets that are popular in the research community do not meet these requirements. Our results indicate that higher quality datasets should be used to expedite the progress of NILM research.
Reinforcement learning combined with deep neural networks has performed remarkably well in many genres of games recently. It has surpassed human-level performance in fixed game environments and turn-based two player board games. However, to the best of our knowledge, current research has yet to produce a result that has surpassed human-level performance in modern complex fighting games. This is due to the inherent difficulties with real-time fighting games, including: vast action spaces, action dependencies, and imperfect information. We overcame these challenges and made 1v1 battle AI agents for the commercial game "Blade & Soul". The trained agents competed against five professional gamers and achieved a win rate of 62%. This paper presents a practical reinforcement learning method that includes a novel self-play curriculum and data skipping techniques. Through the curriculum, three different styles of agents were created by reward shaping and were trained against each other. Additionally, this paper suggests data skipping techniques that could increase data efficiency and facilitate explorations in vast spaces. Since our method can be generally applied to all two-player competitive games with vast action spaces, we anticipate its application to game development including level design and automated balancing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.