Materials with multiple superconducting phases are rare. Here, we report the discovery of two-phase unconventional superconductivity in CeRh2As2. Using thermodynamic probes, we establish that the superconducting critical field of its high-field phase is as high as 14 tesla, even though the transition temperature is only 0.26 kelvin. Furthermore, a transition between two different superconducting phases is observed in a c axis magnetic field. Local inversion-symmetry breaking at the cerium sites enables Rashba spin-orbit coupling alternating between the cerium sublayers. The staggered Rashba coupling introduces a layer degree of freedom to which the field-induced transition and high critical field seen in experiment are likely related.
Polycrystalline samples of NaYbO2 are investigated by bulk magnetization and specific-heat measurements, as well as by nuclear magnetic resonance (NMR) and electron spin resonance (ESR) as local probes. No signatures of long-range magnetic order are found down to 0.3 K, evidencing a highly frustrated spin-liquid-like ground state in zero field. Above 2 T, signatures of magnetic order are observed in thermodynamic measurements, suggesting the possibility of a field-induced quantum phase transition. The 23 Na NMR relaxation rates reveal the absence of magnetic order and persistent fluctuations down to 0.3 K at very low fields and confirm the bulk magnetic order above 2 T. The H-T phase diagram is obtained and discussed along with the existing theoretical concepts for layered spin-1 2 triangular-lattice antiferromagnets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.