Purpose: Although microRNAs have recently been recognized as riboregulators of gene expression, little is known about microRNA expression profiles in serous ovarian carcinoma. We assessed the expression of microRNA and the association between microRNA expression and the prognosis of serous ovarian carcinoma. Experimental Design: Twenty patients diagnosed with serous ovarian carcinoma and eight patients treated for benign uterine disease between December 2000 and September 2003 were enrolled in this study. The microRNA expression profiles were examined using DNA microarray and Northern blot analyses. Results: Several microRNAs were differentially expressed in serous ovarian carcinoma compared with normal ovarian tissues, including miR-21, miR-125a, miR-125b, miR-100, miR-145, miR-16, and miR-99a, which were each differentially expressed in >16 patients. In addition, the expression levels of some microRNAs were correlated with the survival in patients with serous ovarian carcinoma. Higher expression of miR-200, miR-141, miR-18a, miR-93, and miR-429, and lower expression of let-7b, and miR-199a were significantly correlated with a poor prognosis (P < 0.05).
Conclusion:Our results indicate that dysregulation of microRNAs is involved in ovarian carcinogenesis and associated with the prognosis of serous ovarian carcinoma.
The manipulation of magnetic ordering with applied electric fields is of pressing interest for new magnetoelectric devices and information storage applications. Recently, such magnetoelectric control was realized in multiferroics. However, their magnetoelectric switching is often accompanied by significant hysteresis, resulting from a large barrier, separating different ferroic states. Hysteresis prevents robust switching, unless the applied field overcomes a certain value (coercive field). Here we address the role of a switching barrier on magnetoelectric control, and identify a material, collinear antiferromagnetic and pyroelectric Ni 3 TeO 6 , in which magnetoelectric switching occurs without hysteresis. The barrier between two magnetic states in the vicinity of a spin-flop transition is almost flat, and thus small changes in external electric/magnetic fields allow to switch the ferroic state through an intermediate state in a continuous manner, resulting in a colossal magnetoelectric response. This colossal magnetoelectric effect resembles the large piezoelectric effect at the morphotropic phase boundary in ferroelectrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.