The oleaginous yeast Yarrowia lipolytica is an industrially important host for production of organic acids, oleochemicals, lipids, and proteins with broad biotechnological applications. Albeit known for decades, the unique native metabolism of Y. lipolytica for using complex fermentable sugars, which are abundant in lignocellulosic biomass, is poorly understood. In this study, we activated and elucidated the native sugar metabolism in Y. lipolytica for cell growth on xylose and cellobiose as well as their mixtures with glucose through comprehensive metabolic and transcriptomic analyses. We identified 7 putative glucose-specific transporters, 16 putative xylose-specific transporters, and 4 putative cellobiose-specific transporters that are transcriptionally upregulated for growth on respective single sugars. Y. lipolytica is capable of using xylose as a carbon source, but xylose dehydrogenase is the key bottleneck of xylose assimilation and is transcriptionally repressed by glucose. Y. lipolytica has a set of 5 extracellular and 6 intracellular -glucosidases and is capable of assimilating cellobiose via extra-and intracellular mechanisms, the latter being dominant for growth on cellobiose as a sole carbon source. Strikingly, Y. lipolytica exhibited enhanced sugar utilization for growth in mixed sugars, with strong carbon catabolite activation for growth on the mixture of xylose and cellobiose and with mild carbon catabolite repression of glucose on xylose and cellobiose. The results of this study shed light on fundamental understanding of the complex native sugar metabolism of Y. lipolytica and will help guide inverse metabolic engineering of Y. lipolytica for enhanced conversion of biomass-derived fermentable sugars to chemicals and fuels.
In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum--endoglucanase (Cel5A), exoglucanase (Cel9E), and β-glucosidase--on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 ± 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 ± 0.15%. Ethanol production was 0.30 ± 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 ± 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems.
Ionic liquids (ILs) are benign solvents that are highly effective for biomass pretreatment. However, their applications for scale-up biorefinery are limited due to multiple expensive IL recovery and separation steps that are required. To overcome this limitation, it is very critical to develop a compatible enzymatic and microbial biocatalyst system to carry the simultaneous saccharification and fermentation in IL environments (SSF-IL). While enzymatic biocatalysts have been demonstrated to be compatible with various IL environments, it is challenging to develop microbial biocatalysts that can thrive and perform efficient biotransformation under the same conditions (pH and temperature). In this study, we harnessed the robust metabolism of Yarrowia lipolytica as a microbial platform highly compatible with the IL environments such as 1-ethyl-3-methylimidazolium acetate ([EMIM][OAc]). We optimized the enzymatic and microbial biocatalyst system using commercial cellulases and demonstrated the capability of Y. lipolytica to convert cellulose into high-value organics such as α-ketoglutaric acid (KGA) in the SSF-IL process at relatively low temperature 28 °C and high pH 6.3. We showed that SSF-IL not only enhanced the enzymatic saccharification but also produced KGA up to 92% of the maximum theoretical yield.
Pentoses, including xylose and arabinose, are the second most prevalent sugars in lignocellulosic biomass that can be harnessed for biological conversion. Although has emerged as a promising industrial microorganism for production of high-value chemicals and biofuels, its native pentose metabolism is poorly understood. Our previous study demonstrated that (ATCC MYA-2613) has endogenous enzymes for d-xylose assimilation, but inefficient xylitol dehydrogenase causes to assimilate xylose poorly. In this study, we investigated the functional roles of native sugar-specific transporters for activating the dormant pentose metabolism in By screening a comprehensive set of 16 putative pentose-specific transporters, we identified two candidates, YALI0C04730p and YALI0B00396p, that enhanced xylose assimilation. The engineered mutants YlSR207 and YlSR223, overexpressing YALI0C04730p and YALI0B00396p, respectively, improved xylose assimilation approximately 23% and 50% in comparison to YlSR102, a parental engineered strain overexpressing solely the native xylitol dehydrogenase gene. Further, we activated and elucidated a widely unknown native l-arabinose assimilation pathway in through transcriptomic and metabolic analyses. We discovered that can coconsume xylose and arabinose, where arabinose utilization shares transporters and metabolic enzymes of some intermediate steps of the xylose assimilation pathway. Arabinose assimilation is synergistically enhanced in the presence of xylose, while xylose assimilation is competitively inhibited by arabinose. l-Arabitol dehydrogenase is the rate-limiting step responsible for poor arabinose utilization in Overall, this study sheds light on the cryptic pentose metabolism of and, further, helps guide strain engineering of for enhanced assimilation of pentose sugars. The oleaginous yeast is a promising industrial-platform microorganism for production of high-value chemicals and fuels. For decades since its isolation, has been known to be incapable of assimilating pentose sugars, xylose and arabinose, that are dominantly present in lignocellulosic biomass. Through bioinformatic, transcriptomic, and enzymatic studies, we have uncovered the dormant pentose metabolism of Remarkably, unlike most yeast strains, which share the same transporters for importing hexose and pentose sugars, we discovered that possesses the native pentose-specific transporters. By overexpressing these transporters together with the rate-limiting d-xylitol and l-arabitol dehydrogenases, we activated the dormant pentose metabolism of Overall, this study provides a fundamental understanding of the dormant pentose metabolism of and guides future metabolic engineering of for enhanced conversion of pentose sugars to high-value chemicals and fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.