In this work we study the use of 3D hand poses to recognize first-person dynamic hand actions interacting with 3D objects. Towards this goal, we collected RGB-D video sequences comprised of more than 100K frames of 45 daily hand action categories, involving 26 different objects in several hand configurations. To obtain hand pose annotations, we used our own mo-cap system that automatically infers the 3D location of each of the 21 joints of a hand model via 6 magnetic sensors and inverse kinematics. Additionally, we recorded the 6D object poses and provide 3D object models for a subset of hand-object interaction sequences. To the best of our knowledge, this is the first benchmark that enables the study of first-person hand actions with the use of 3D hand poses. We present an extensive experimental evaluation of RGB-D and pose-based action recognition by 18 baselines/state-of-the-art approaches. The impact of using appearance features, poses, and their combinations are measured, and the different training/testing protocols are evaluated. Finally, we assess how ready the 3D hand pose estimation field is when hands are severely occluded by objects in egocentric views and its influence on action recognition. From the results, we see clear benefits of using hand pose as a cue for action recognition compared to other data modalities. Our dataset and experiments can be of interest to communities of 3D hand pose estimation, 6D object pose, and robotics as well as action recognition.
Estimating 3D hand meshes from single RGB images is challenging, due to intrinsic 2D-3D mapping ambiguities and limited training data. We adopt a compact parametric 3D hand model that represents deformable and articulated hand meshes. To achieve the model fitting to RGB images, we investigate and contribute in three ways: 1) Neural rendering: inspired by recent work on human body, our hand mesh estimator (HME) is implemented by a neural network and a differentiable renderer, supervised by 2D segmentation masks and 3D skeletons. HME demonstrates good performance for estimating diverse hand shapes and improves pose estimation accuracies. 2) Iterative testing refinement: Our fitting function is differentiable. We iteratively refine the initial estimate using the gradients, in the spirit of iterative model fitting methods like ICP. The idea is supported by the latest research on human body. 3) Self-data augmentation: collecting sized RGB-mesh (or segmentation mask)-skeleton triplets for training is a big hurdle. Once the model is successfully fitted to input RGB images, its meshes i.e. shapes and articulations, are realistic, and we augment view-points on top of estimated dense hand poses. Experiments using three RGB-based benchmarks show that our framework offers beyond state-of-the-art accuracy in 3D pose estimation, as well as recovers dense 3D hand shapes. Each technical component above meaningfully improves the accuracy in the ablation study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.