Drop‐on‐demand inkjet printing is one of the most attractive techniques from a manufacturing perspective due to the possibility of fabrication from a digital layout at ambient conditions, thus leading to great opportunities for the realization of low‐cost and flexible thin‐film devices. Over the past decades, a variety of inkjet‐printed applications including thin‐film transistors (TFTs), radio‐frequency identification devices, sensors, and displays have been explored. In particular, many research groups have made great efforts to realize high‐performance TFTs, for application as potential driving components of ubiquitous wearable electronics. Although there are still challenges to enable the commercialization of printed TFTs beyond laboratory‐scale applications, the field of printed TFTs still attracts significant attention, with remarkable developments in soluble materials and printing methodology. Here, recent progress in printing‐based TFTs is presented from materials to applications. Significant efforts to improve the electrical performance and device‐yield of printed TFTs to match those of counterparts fabricated using conventional deposition or photolithography methods are highlighted. Moreover, emerging low‐dimension printable semiconductors, including carbon nanotubes and transition metal dichalcogenides as well as mature semiconductors, and new‐concept printed switching devices, are also discussed.
Designing softness into robots holds great potential for augmenting robotic compliance in dynamic, unstructured environments. However, despite the body's softness, existing models mostly carry inherent hardness in their driving parts, such as pressure-regulating components and rigid circuit boards. This compliance gap can frequently interfere with the robot motion and makes soft robotic design dependent on rigid assembly of each robot component. We present a skin-like electronic system that enables a class of wirelessly activated fully soft robots whose driving part can be softly, compactly, and reversibly assembled. The proposed system consists of two-part electronic skins (e-skins) that are designed to perform wireless communication of the robot control signal, namely, "wireless inter-skin communication," for untethered, reversible assembly of driving capability. The physical design of each e-skin features minimized inherent hardness in terms of thickness (<1 millimeter), weight (~0.8 gram), and fragmented circuit configuration. The developed e-skin pair can be softly integrated into separate soft body frames (robot and human), wirelessly interact with each other, and then activate and control the robot. The e-skin-integrated robotic design is highly compact and shows that the embedded e-skin can equally share the fine soft motions of the robot frame. Our results also highlight the effectiveness of the wireless interskin communication in providing universality for robotic actuation based on reversible assembly.
Softening of thermoelectric generators facilitates conformal contact with arbitrary-shaped heat sources, which offers an opportunity to realize self-powered wearable applications. However, existing wearable thermoelectric devices inevitably exhibit reduced thermoelectric conversion efficiency due to the parasitic heat loss in high-thermal-impedance polymer substrates and poor thermal contact arising from rigid interconnects. Here, we propose compliant thermoelectric generators with intrinsically stretchable interconnects and soft heat conductors that achieve high thermoelectric performance and unprecedented conformability simultaneously. The silver-nanowire-based soft electrodes interconnect bismuth-telluride-based thermoelectric legs, effectively absorbing strain energy, which allows our thermoelectric generators to conform perfectly to curved surfaces. Metal particles magnetically self-assembled in elastomeric substrates form soft heat conductors that significantly enhance the heat transfer to the thermoelectric legs, thereby maximizing energy conversion efficiency on three-dimensional heat sources. Moreover, automated additive manufacturing paves the way for realizing self-powered wearable applications comprising hundreds of thermoelectric legs with high customizability under ambient conditions.
We report high performance and stable inkjet-printed stretchable silver electrodes on wave structured elastomeric substrates. Highly conductive silver electrodes were deposited directly on a ultraviolet ozone treated polydimethylsiloxane (PDMS) substrates having vertical wavy structures. Adhesion between printed silver lines and PDMS surface has been enhanced by intentionally roughened PDMS surface with wire-electro discharge machined aluminum mold. During slow (16.7 μm/s) stretching test, resistance of the printed silver electrode was increased only by three times at 30% tensile strain. Inkjet-printed silver electrodes also showed good mechanical stability during 1000-time fast (1 mm/s) cycling test with 10% tensile strain, showing maximum resistance change of less than three times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.