This study conducts a detection and attribution analysis of the observed changes in extreme precipitation during 1951-2015. Observed and CMIP6 multimodel simulated changes in annual maximum daily and consecutive 5-day precipitation are compared using an optimal fingerprinting technique for different spatial scales from global land, Northern Hemisphere extratropics, tropics, three continental regions (North America and western and eastern Eurasia), and global "dry" and "wet" land areas (as defined by their average extreme precipitation intensities). Results indicate that anthropogenic greenhouse gas influence is robustly detected in the observed intensification of extreme precipitation over the global land and most of the subregions considered, all with clear separation from natural and anthropogenic aerosol forcings. Also, the human-induced greenhouse gas increases are found to be a dominant contributor to the observed increase in extreme precipitation intensity, which largely follows the increased moisture availability under global warming. Plain Language Summary Human influences have been identified in the observed intensification of extreme precipitation at global and continental scales, but quantifying the contribution of greenhouse gas increases remains challenging. Here, we isolate anthropogenic greenhouse gas impacts on the observed intensification of extreme precipitation during 1951-2015 by comparing observations with CMIP6 individual forcing experiments. Results show that greenhouse gas influences are detected over the global land, Northern Hemisphere extratropics, western and eastern Eurasia, and global "dry" and "wet" regions, which are separable from other external forcings such as solar and volcanic activities and anthropogenic aerosols. The human-induced greenhouse gas increases are also found to explain most of the observed changes in extreme precipitation intensity, which are consistent with the increased moisture availability with warming. Our results provide the first quantitative evidence for the dominant influence of human-made greenhouse gases on extreme precipitation increase.
There remains large intersimulation spread in the hydrologic responses to tropical volcanic eruptions, and identifying the sources of diverse responses has important implications for assessing the side effects of solar geoengineering and improving decadal predictions. Here, we show that the intersimulation spread in the global monsoon drying response strongly relates to diverse El Niño responses to tropical eruptions. Most of the coupled climate models simulate El Niño–like equatorial eastern Pacific warming after volcanic eruptions but with different amplitudes, which drive a large spread of summer monsoon weakening and corresponding precipitation reduction. Two factors are further identified for the diverse El Niño responses. Different volcanic forcings induce systematic differences in the Maritime Continent drying and subsequent westerly winds over equatorial western Pacific, varying El Niño intensity. The internally generated warm water volume over the equatorial western Pacific in the pre-eruption month also contributes to the diverse El Niño development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.