Resistance switching in metal oxides could form the basis for next-generation non-volatile memory. It has been argued that the current in the high-conductivity state of several technologically relevant oxide materials flows through localized filaments, but these filaments have been characterized only indirectly, limiting our understanding of the switching mechanism. Here, we use high-resolution transmission electron microscopy to probe directly the nanofilaments in a Pt/TiO(2)/Pt system during resistive switching. In situ current-voltage and low-temperature (approximately 130 K) conductivity measurements confirm that switching occurs by the formation and disruption of Ti(n)O(2n-1) (or so-called Magnéli phase) filaments. Knowledge of the composition, structure and dimensions of these filaments will provide a foundation for unravelling the full mechanism of resistance switching in oxide thin films, and help guide research into the stability and scalability of such films for applications.
We present the derivation of an interatomic potential for the iron phosphorus system based primarily on ab initio data. Transferrability in this system is extremely problematic, and the potential is intended specifically to address the problem of radiation damage and point defects in iron containing low concentrations of phosphorus atoms. Some preliminary molecular dynamics calculations show that P strongly affects point defect migration.
To understand the formation mechanism of magnetic moments at the edges of graphitic fragments, we carry out first-principles density-functional calculations for the electronic and magnetic structures of graphitic fragments with various spin and geometric configurations. We find that interedge and interlayer interactions between the localized moments can be explained in terms of interactions between the magnetic tails of the edge-localized states. In addition, the dihydrogenated edge states as well as Fe ad-atoms at the edge are studied in regard to the magnetic order and proximity effects.
The development of a water oxidation catalyst has been a demanding challenge in realizing water splitting systems. The asymmetric geometry and flexible ligation of the biological Mn4CaO5 cluster are important properties for the function of photosystem II, and these properties can be applied to the design of new inorganic water oxidation catalysts. We identified a new crystal structure, Mn3(PO4)2·3H2O, that precipitates spontaneously in aqueous solution at room temperature and demonstrated its high catalytic performance under neutral conditions. The bulky phosphate polyhedron induces a less-ordered Mn geometry in Mn3(PO4)2·3H2O. Computational analysis indicated that the structural flexibility in Mn3(PO4)2·3H2O could stabilize the Jahn-Teller-distorted Mn(III) and thus facilitate Mn(II) oxidation. This study provides valuable insights into the interplay between atomic structure and catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.