As a state-of-the-art computational method for simulating rock fracturing and fragmentation, the combined finite-discrete element method (FDEM) has become widely accepted since Munzijia (2004) published his comprehensive book of FDEM. This study developed a generalpurpose graphic-processing-unit (GPGPU)-parallelized FDEM using the compute unified device architecture (CUDA) C/C++ based on the authors' former sequential two-dimensional (2D) and three-dimensional (3D) Y-HFDEM IDE (integrated development environment) code. The theory and algorithm of the GPGPU-parallelized 3D Y-HFDEM IDE code are first introduced by focusing on the implementation of the contact detection algorithm, which is different from that in the sequential code, contact damping and contact friction. 3D modelling of the failure process of limestone under quasi-static loading conditions in uniaxial compressive strength (UCS) tests and Brazilian tensile strength (BTS) tests are then conducted using the GPGPU-parallelized 3D Y-HFDEM IDE code. The 3D FDEM modelling results show that mixed-mode I-II failures are the dominant failure mechanisms along the shear and splitting failure planes in the UCS and BTS models, respectively, with unstructured meshes. Pure mode I splitting failure planes and pure mode II shear failure planes are only possible in the UCS and BTS models, respectively, with structured meshes. Subsequently, 3D modelling of the dynamic fracturing of marble in dynamic Brazilian tests with a split Hopkinson pressure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.