Muscular dystrophy includes a diverse group of inherited muscle diseases characterized by wasting and weakness of skeletal muscle. Mutations in dysferlin are linked to two clinically distinct muscle diseases, limb-girdle muscular dystrophy type 2B and Miyoshi myopathy, but the mechanism that leads to muscle degeneration is unknown. Dysferlin is a homologue of the Caenorhabditis elegans fer-1 gene, which mediates vesicle fusion to the plasma membrane in spermatids. Here we show that dysferlin-null mice maintain a functional dystrophin-glycoprotein complex but nevertheless develop a progressive muscular dystrophy. In normal muscle, membrane patches enriched in dysferlin can be detected in response to sarcolemma injuries. In contrast, there are sub-sarcolemmal accumulations of vesicles in dysferlin-null muscle. Membrane repair assays with a two-photon laser-scanning microscope demonstrated that wild-type muscle fibres efficiently reseal their sarcolemma in the presence of Ca2+. Interestingly, dysferlin-deficient muscle fibres are defective in Ca2+-dependent sarcolemma resealing. Membrane repair is therefore an active process in skeletal muscle fibres, and dysferlin has an essential role in this process. Our findings show that disruption of the muscle membrane repair machinery is responsible for dysferlin-deficient muscle degeneration, and highlight the importance of this basic cellular mechanism of membrane resealing in human disease.
Summary Dominant negative mutations in the nuclear hormone receptor peroxisome proliferator-activated receptor-γ (PPARγ) cause hypertension by an unknown mechanism. Hypertension and vascular dysfunction are recapitulated by expression of dominant negative PPARγ specifically in vascular smooth muscle of transgenic mice. Dominant negative PPARγ increases RhoA and Rho-kinase activity, and inhibition of Rho-kinase restores normal reactivity and reduces arterial pressure. RhoBTB1, a component of the Cullin-3 RING E3 ubiquitin ligase complex, is a PPARγ target gene. Decreased RhoBTB1, Cullin-3 and neddylated Cullin-3 correlated with increased levels of the Cullin-3 substrate RhoA. Knockdown of Cullin-3 or inhibition of cullin-RING ligase activity in aortic smooth muscle cells increased RhoA. Cullin-RING ligase inhibition enhanced agonist-mediated contraction in aortic rings from normal mice by a Rho-kinase-dependent mechanism, and increased arterial pressure in vivo. We conclude that Cullin-3 regulates vascular function and arterial pressure thus providing a mechanistic link between mutations in Cullin-3 and hypertension in humans.
In the present report we studied the interaction between the skeletal muscle ryanodine receptor and the ubiquitous S100A1 Ca2+ binding protein. S100A1 did not affect equilibrium [3H]ryanodine binding to purified rabbit skeletal muscle terminal cisternae at 100 microM free [Ca2+]. At nanomolar free [Ca2+], however, S100A1 activated by 40 +/- 6.7% (mean +/- SE, n = 5) the [3H]ryanodine binding activity; the half-maximal concentration for stimulation of [3H]ryanodine binding was approximately 70 nM, a value well below the estimated S100A1 concentration in skeletal muscle fibers. Scatchard analysis of [3H]ryanodine binding performed in the presence of 100 microM EGTA indicates that S100A1 increases the apparent affinity of the receptor for ryanodine (Kd = 191 vs 383 nM in the presence and in the absence of 100 nM S100A1, respectively). The effect of S100A1 was also tested on the single-channel gating properties of the purified ryanodine receptor after reconstitution into a lipid planar bilayer. Currents carried by purified ryanodine receptor channels were modulated by both cis Ca2+ and ruthenium red. In the presence of nanomolar [Ca2+], S100A1 activated the channel by increasing (6.0 +/- 2.8)-fold (mean +/- SE, n = 3) the normalized open probability. The interaction between S100A1 and the purified RYR was verified using the optical biosensor BIAcore: we show that the two proteins interact directly both at millimolar and at nanomolar calcium concentrations. We next mapped the regions of the skeletal muscle RYR involved in the interaction with S100A1 by performing ligand overlays on a panel RYR of fusion proteins in the presence of 100 nM S100A1. Our results indicate that the skeletal muscle RYR contains three potential S100A1 binding domains. Binding of S100A1 to the RYR fusion proteins occurred at both nanomolar and millimolar free [Ca2+]. S100A1 binding domain 1 binds the ligand in the presence of 1 mM free [Ca2+] or 1 mM EGTA. Maximal binding to S100A1#2 was achieved in the presence of 1 mM free [Ca2+]. The S100A1#3 domain, which overlaps with calcium-dependent calmodulin binding domain 3 (CaM 3), exhibits weak and strong S100A1 binding activity in the presence of either millimolar or nanomolar Ca2+, respectively. The interaction between S100A1 and the purified RYR complex was also investigated by affinity chromatography: in the presence of nanomolar Ca2+, we observed binding of native RYR complex to S100A1-conjugated Sepharose. This interaction could be inhibited by the presence of RYR polypeptides encompassing S100A1 binding sites S100A1#1, S100A1#2, and S100A1#3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.