During fasting, mammals maintain glucose homeostasis by stimulating hepatic gluconeogenesis1. Elevations in circulating glucagon (GLU) and epinephrine trigger the cAMP mediated phosphorylation of Creb and dephosphorylation of the Creb coactivator Crtc22. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment3–6. Here we show that Creb activity during fasting is modulated by Cryptochromes (Cry1 and Cry2), core components of the clock that are rhythmically expressed in the liver. Cry was elevated during the night/day transition, when it reduced fasting gluconeogenic gene expression by blocking GLU-mediated increases in intracellular cAMP concentrations and in the PKA-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry inhibited accumulation of cAMP in response to G protein coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry appeared to modulate GPCR activity directly through interaction with Gsα . As hepatic over-expression of Cry lowered blood glucose concentrations and improved insulin sensitivity in insulin resistant db/db mice, our results suggest that compounds which enhance Cry activity may provide therapeutic benefit to individuals with type II diabetes.
SUMMARY Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using enhanced UV crosslinking and immunoprecipitation (eCLIP), we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3′UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles.
We previously reported the identification of the Kis2 common retrovirus integration site, located on mouse chromosome X, in radiation leukemia virus-induced T-cell leukemias. Tumors with a provirus at the Kis2 locus overexpressed a novel noncoding RNA (ncRNA) with a complex splicing pattern and no polyA tail. Database upgrade revealed the presence of a microRNA (miRNA) cluster, miR-106-363, just downstream of the Kis2 ncRNAs. We found that Kis2 ncRNAs are the primiRNA of miR-106-363, and we present evidence that Kis2 ncRNA overexpression in mouse tumors results in miR-106a, miR-19b-2, miR-92-2, and miR-20b accumulation. We show the oncogenic potential of those miRNAs in anchorage independence assay and confirm pri-miR-106-363 overexpression in 46% of human T-cell leukemias tested. This overexpression contributes in rising miR-92 and miR-19 levels, as this is the case for miR-17-92 cluster overexpression. Furthermore, we identified myosin regulatory light chain-interacting protein, retinoblastoma-binding protein 1-like, and possibly homeodomain-interacting protein kinase 3 as target genes of this miRNA cluster, which establishes a link between these genes and T-cell leukemia for the first time. [Cancer Res 2007;67(12):5699-707]
Polycomb group (PcG) proteins establish and maintain genetic programs that regulate cell fate decisions. Drosophila multi sex combs (mxc) was categorized as a PcG gene based on a classical Polycomb phenotype and genetic interactions; however, a mechanistic connection between Polycomb and Mxc has not been elucidated. Hypomorphic alleles of mxc are characterized by male and female sterility and ectopic sex combs. Mxc is an important regulator of histone synthesis, and we find that increased levels of the core histone H3 in mxc mutants result in replicative stress and a persistent DNA damage response (DDR). Germline loss, ectopic sex combs and the DDR are suppressed by reducing H3 in mxc mutants. Conversely, mxc phenotypes are enhanced when the DDR is abrogated. Importantly, replicative stress induced by hydroxyurea treatment recapitulated mxc germline phenotypes. These data reveal how persistent replicative stress affects gene expression, tissue homeostasis, and maintenance of cellular identity in vivo.
Retroviral tagging has been used extensively and successfully to identify genes implicated in cancer pathways. In order to find oncogenes implicated in T-cell leukemia, we used the highly leukemogenic radiation leukemia retrovirus VL3 (RadLV/VL3). We applied the inverted PCR technique to isolate and analyze sequences flanking proviral integrations in RadLV/VL3-induced T lymphomas. We found retroviral integrations in c-myc and Pim1 as already reported but we also identified for the first time Notch1 as a RadLV common integration site. More interestingly, we found a new RadLV common integration site that is situated on mouse chromosome X (XA4 region, bp 45091000). This site has also been reported as an SL3-3 and Moloney murine leukemia virus integration site, which strengthens its implication in murine leukemia virus-induced T lymphomas. This locus, named Kis2 (Kaplan Integration Site 2), was found rearranged in 11% of the tumors analyzed. In this article, we report not only the alteration of the Kis2 gene located nearby in response to RadLV integration but also the induction of the expression of Phf6, situated about 250 kbp from the integration site. The Kis2 gene encodes five different alternatively spliced noncoding RNAs and the Phf6 gene codes for a 365-amino-acid protein which contains two plant homology domain fingers, recently implicated in the Börje-son-Forssman-Lehmann syndrome in humans. With the recent release of the mouse genome sequence, highthroughput retroviral tagging emerges as a powerful tool in the quest for oncogenes. It also allows the analysis of large DNA regions surrounding the integration locus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.