Background / Aims:Septicemia is one of the important causes of mortality and morbidity in neonates and children. Blood culture is the gold standard for the diagnosis. Emergence of multidrug resistant bacterial strains is a major problem in the management of sepsis. Present study was undertaken to identify the common bacterial pathogens associated with pediatric sepsis and to determine their antibiotic susceptibility pattern.Materials and Methods:Blood cultures from 185 suspected cases of sepsis were examined. The growths from the subcultures were identified by conventional biochemical tests. Antibiotic susceptibility testing was performed by modified Kirby-Bauer disk diffusion method and drug resistant strains in primary screening were further processed for extended spectrum beta lactamases (ESBL) and methicillin resistant Staphylococcus aureus (MRSA) status by combination disk method (ESBL) and oxacillin disk diffusion method (MRSA).Results:Out of the 185 cultures obtained from suspected cases, 81 (44%) were culture positive. Fifty-two (35%) of the culture isolates were Gram negative bacilli. Twenty-eight (64%) of the isolates were Gram positive cocci. One case was of mixed infection. The prevalence of MRSA in 41 strains of S. aureus was found to be 29% (12 strains). The overall prevalence of ESBL producers among 28 Gram negative bacterial isolates was found to be 32% (9 strains).Conclusion:This study stresses the need for the continuous screening and surveillance for antibiotic resistance in pediatric care unit.
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are gaining increasing importance in the field of regenerative medicine. Although therapeutic value of MSCs is now being established through many clinical trials, issues have been raised regarding their expansion as per regulatory guidelines. Fetal bovine serum usage in cell therapy poses difficulties due to its less-defined, highly variable composition and safety issues. Hence, there is a need for transition from serum-based to serum-free media (SFM). Since SFM are cell type-specific, a precise analysis of the properties of MSCs cultured in SFM is required to determine the most suitable one. Six different commercially available low serum/SFM with two different seeding densities were evaluated to explore their ability to support the growth and expansion of BM-MSCs and assess the characteristics of BM-MSCs cultured in these media. Except for one of the SFM, all other media tested supported the growth of BM-MSCs at a low seeding density. No significant differences were observed in the expression of MSC specific markers among the various media tested. In contrary, the population doubling time, cell yield, potency, colony-forming ability, differentiation potential, and immunosuppressive properties of MSCs varied with one another. We show that SFM tested supports the growth and expansion of BM-MSCs even at low seeding density and may serve as possible replacement for animal-derived serum.
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes (ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Background: DOC2B promoter hypermethylation is an early and frequent event in cervical cancer. Results: DOC2B hypermethylation induces transcriptional repression, reactivated by demethylation; ectopic expression increases Ca 2ϩ flux and inhibits key characteristics of tumorigenesis including proliferation, motility, and invasion. Conclusion: DOC2B gene is epigenetically regulated and inhibits cervical cancer growth. Significance: DNA methylation regulates DOC2B gene expression in cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.