İmalat teknolojisindeki gelişmeler neticesinde ortaya çıkan mikro ve nano elektromekanik sistemler (MEMS ve NEMS); biyosensörler, aktüatörler ve atomik kuvvet mikroskopları (AKM) gibi mikro ve nano yapıya sahip sistemlerde çok yaygın olarak kullanılmaktadır. NEMS ve MEMS’ de kiriş veya benzeri elemanlar ve yapılar bulunmaktadır. Bu elemanlar sabit kesitli olduğu gibi değişken kesitlere de sahip olabilmektedirler. Söz konusu sistemler içindeki kiriş elemanların statik ve dinamik davranış karakterlerinin bilinmesi çok önemlidir. Çünkü sistemin sorunsuz çalışması için ihtiyaç duyulan çalışma frekansının, tasarlanan sistemin doğal frekansı ile aynı olmaması gerekmektedir. Bu nedenden dolayı mikro ve nano elemanların serbest titreşim analizlerinin yapılması sorunsuz bir tasarım için hayati önem taşımaktadır. Bu kapsamda, ortadan mesnetli mikro kirişin titreşim analizleri yapılmıştır. Mikro kiriş seramik özellikte olup elektrik alan içerisine yerleştirilmiş ve mesnetlerin pozisyonları değiştirilerek titreşim karakterleri incelenmiştir. Hareket denklemleri modifiye gerilme çifti teorisi kullanılarak Hamilton metoduna göre elde edilmiştir. Hareket denklemi, pertürbasyon metotlarından biri olan çok zaman ölçekli metot ile çözümü elde edilmiştir. Doğal frekanslar ve mod şekilleri, boyutsuz parametreler mesnet konumu, gerilme katsayısı ve mikrokirişlik katsayısına bağlı olarak elde edilmiştir.
In this study, linear vibration of middle supported nanobeam, which is commonly used in nano electromechanical systems, is analyzed. Eringen's nonlocal elasticity theory is used to capture nanoscale effect. Equation of motion of nanobeam is derived with the Hamilton principle. Multiple scale methods, which is one of the perturbation techniques, is performed for solving the equation of motion. Support position and nonlocal effect are focused on the research. The results are presented with graphs and table. In conclusion, when the nonlocal parameter is getting a raise, more nanoscale structure is obtained. Highest rigidity and linear natural frequency are received with midposition of the support.
This study analyzes the vibration movements of multi-support micro beams placed in an electrically smooth area using the modified couple stress theory. It has been assumed that the potential voltage that creates the electrical field strength varies harmonically. Large number of experiments in recent years have indicated that classical continuum theory is unable to predict the mechanical behavior of microstructure with small size. However, nonclassical continuum theory should be used to accurately design and analyze the microstructures. Modified couple stress theory models the micro and nanomechanical systems with higher accuracy because they employ additional material parameters to the equation considering size dependent behavior. The most general nonlinear motion equations for multi-support microbeams have been obtained by considering the material size parameter, the number of support and support positions, damping effect, axial stresses, electrical field strength, and nonlinear effects resulting from elongations. The nonlinear equations of motion are obtained according to the Hamilton method using the modified couple stress theory (MCST). The resulting equations of motion are nondimensionalized. In this way, the mathematical model has been made independent of the type and geometric structure of the material. Approximate solutions of the obtained dimensionless motion equation are obtained by the multi-scale method, which is one of the perturbation methods. As a result, an increase occurs in the first mode frequencies ([Formula: see text]) and nonlinear correction effect parameters ([Formula: see text]) with the progress of the center support position gradually towards [Formula: see text] and the increase of the microbeam elasticity coefficient ([Formula: see text]).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.