The dynamics of thermally stimulated surface fluctuations of 100 nm thick films of long-branched polymers are measured for the first time. In contrast to comparable films of linear or cyclic chains that show no change in viscosity upon confinement, films of 6-pom, 6-star, and 6-end end-branched stars show viscosities, inferred from x-ray photon correlation spectroscopy, as much as 100 times higher than in the bulk. This difference varies in magnitude with chain architecture. Branching has a profound effect on confinement, even for these unentangled chains.
The adhesion between aluminum (Al) foil and cast polypropylene (CPP) film laminated with mixtures of amorphous- and crystalline-maleic anhydride-grafted ethylene-propylene-diene monomer (MAH-g-EPDM) rubbers and highly reactive polybutene (HRPB) as the adhesives was investigated. Specifically, the HRPB was used as an adhesion promoter of the MAH-g-EPDM rubbers and CPP as well as a compatibilizer of two kinds of MAH-g-EPDM rubbers having limited miscibility. To introduce strong chemical bonds between the MAH-g-EPDM rubbers and Al foil, the surface of Al foil was treated with 3-aminopropyl triethoxysilane (APTES). The weak adhesion between Al foil and MAH-g-EPDM rubbers was improved by imidization between the amine groups (–NH2) of APTES and the maleic anhydride groups (MAH) of MAH-g-EPDM rubbers. The effects of the composition of adhesives, tempering time and adhesive thickness were also studied to optimize the adhesion of the CPP/Al foil laminates. We concluded that MAH-g-EPDM rubber based adhesives containing HRPB can be applied for the lamination of Al foil and CPP films to satisfy the requirements of high-performance packaging materials for various purposes.
In order to study the problem of surface fluctuations and slag entrapment, the nail board experiment and simulation computation method was used to optimize the method for measuring liquid level characteristics in mold. The influence of steel nails diameter and the distance between steel nails on the measurement results was studied. The height of the liquid surface and the surface velocity at different time and position were both obtained. The experimental results were compared with the results of numerical simulation. The large eddy simulation (LES) method is used to calculate the steel nails with different diameters and the spacing of the steel nails taking slag layer into consideration. It is showed that when the diameter of the steel nail is 10 mm and the distance between adjacent steel nails is 100 mm, the measurement results is most accurate which is in good agreement with the actual conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.