In this paper, an off-line method, based on hidden Markov model, HMM, is used for holistic recognition of handwritten words of a limited vocabulary. Three feature sets based on image gradient, black–white transition and contour chain code are used. For each feature set an HMM is trained for each word. In the recognition step, the outputs of these classifiers are combined through a multilayer perceptron, MLP. High number of connections in this network causes a computational complexity in the training. To avoid this problem, a new method is proposed. In the experiments on 16000 images of 200 names of Iranian cities, from “Iranshahr 3” dataset, the results of the proposed method are presented and compared with some similar methods. An error analysis on these results is also provided.
Genetic algorithms (GAs) are stochastic methods that are widely used in search and optimization. The breeding process is the main driving mechanism for GAs that leads the way to find the global optimum. And the initial phase of the breeding process starts with parent selection. The selection utilized in a GA is effective on the convergence speed of the algorithm. A GA can use different selection mechanisms for choosing parents from the population and in many applications the process generally depends on the fitness values of the individuals. Artificial neural networks (ANNs) are used to decide the appropriate parents by the new hybrid algorithm proposed in this study. And the use of neural networks aims to produce better offspring during the GA search. The neural network utilized in this algorithm tries to learn the structural patterns and correlations that enable two parents to produce high-fit offspring. In the breeding process, the first parent is selected based on the fitness value as usual. Then it is the neural network that decides the appropriate mate for the first parent chosen. Hence, the selection mechanism is not solely dependent on the fitness values in this study. The algorithm is tested with seven benchmark functions. It is observed from results of these tests that the new selection method leads genetic algorithm to converge faster.
In this study, a method for holistic recognition of handwritten Farsi words is proposed, which fuses the outputs of right-to-left (RtL) and left-to-right (LtR) hidden Markov models (HMMs). The experimental results on 16,000 images of 200 names of Iranian cities, from the 'Iranshahr 3' are presented and compared with those methods using only RtL or LtR models. Experimental results show that the main sources of error are similar beginnings or similar endings of the words. Since RtL and LtR models when dealing with the words behave differently, there is notable error diversity between the two classifiers in such a way that their combination increases the recognition rate. Compared to the RtL-HMM, the product of output scores of the RtL and LtR-HMMs reduces the classification error to about 6, 6 and 3%, for three different feature sets. A subjective error analysis on the results is also provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.