In this work we investigate the n-type single halo implantation in channel of lightly doped drain and source CNTFET (SH-LDDS-CNTFET) and propose the n-type double linear halo implantation in the channel of LDDS-CNTFET. These transistors are simulated with a non-equilibrium Green's function method. We demonstrate that in the proposed structure the f T at the V GS ranges of 0-0.25 V and more than 0.42 V is much higher compared to the LDDS-CNTFET and SH-LDDS-CNTFET and the SH-LDDS-CNTFET, respectively. Finally, simulations demonstrate that the f T of the proposed transistor is more than the LDDS-CNTFET at a wide range of V GS , whereas the f T of SH-LDDS-CNTFET is more than the LDDS-CNTFET for narrow ranges of V GS .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.