Objectives: Human umbilical cord mesenchymal cells (hUCM) can be easily obtained and processed in a laboratory. These cells may be considered as a suitable source in the repair of heart failure diseases. We, therefore, examined whether these cells may contribute to heart regeneration following an acute experimental myocardial infarction (MI). Methods: MI-induced animals received 5 × 106 hUCM cells, 5 × 106 5-azacytidine-treated cells (dhUCM), or PBS alone, subepicardially. A group of animals with MI and no other former intervention served as controls. dhUCM cells were assessed for F-actin, myogenin and troponin-I expression. Results: dhUCM cells appeared as binucleated cells with extensive cytoplasmic processes. These differentiated cells were F-actin and myogenin positive. Thirty days after LAD ligation, left ventricular ejection fraction and the percentage of fractional shortening improved significantly in cell-receiving animals. In addition, the amount of scar tissue was significantly reduced in hUCM and dhUCM groups compared to MI group (p < 0.05). These parameters were comparable between hUCM and dhUCM groups. Histopathological evaluations revealed that some engrafted cells adjacent to and remote from the MI area expressed troponin-I, F-actin and connexin43. Conclusion: These findings demonstrated the potential therapeutic use of either differentiated or undifferentiated hUCM cells in treatment of heart failure conditions.
The aim of the present study was to determine whether mesenchymal stem cell-conditioned medium (MSC-CM) modulates apoptotic and stress-related gene expression, and ameliorates maturation and developmental potential of immature human oocytes after artificial activation. A total of 247 surplus immature germinal vesicle (GV) oocytes obtained from infertile women were allocated into two in vitro maturation (IVM) groups: 1: GV oocytes (n = 116) matured in vitro (fIVM), and 2: GV oocytes (n = 131) that were vitrified, then in vitro matured (vIVM). Also, two maturation media were used: Alpha-minimum essential medium (α-MEM) and human umbilical cord-derived MSCs (hUCM). After 36 h of incubation, the IVM oocytes were examined for nuclear maturation. In IVM-matured oocytes, cytoplasmic maturation was evaluated after artificial activation through Ionomycin. Moreover, the quantitative expressions of B-cell CLL/lymphoma 2 (BCL2), BCL2-associated X protein (BAX), superoxide dismutase (SOD), and Heat shock proteins (HSP70) in matured oocytes were assessed by quantitative Real-time polymerase chain reaction (qRT-PCR) and compared with fresh and vitrified in vivo matured oocytes, which were used as fIVM and vIVM controls, respectively. The highest maturation rate was found in hUCM in fIVM, and the lowest maturation rate was found using α-MEM in vIVM (85.18% and 71.42%, respectively). The cleavage rate in fIVM was higher than that in vIVM (83.4% vs. 72.0%). In addition, the cleavage rate in α-MEM was lower than that in the hUCM (66.0% vs. 89.4%). Furthermore, the difference between parthenote embryo arrested in 4–8 cells (p < 0.04) and the quality of embryo arrested in 8-cell (p < 0.007) were significant. The developmental stages of parthenote embryos in hUCM versus α-MEM were as follows: 2–4 cell (89.45% vs. 66.00%, respectively), 4–8 cell (44.31% vs. 29.11%, respectively), morula (12.27% vs. 2.63%, respectively), and blastocysts (2.5% vs. 0%, respectively). The messenger RNA (mRNA) expression levels of BCL2, BAX and SOD were significantly different (p < 0.05) between the matured IVM oocytes. Overall, hUCM showed potential efficacy in terms of ameliorating oocyte maturation and in promoting the development and mRNA expression of BAX, BCL2, and SOD.
Parkinson's disease is a neurodegenerative disorder characterized by progressive and selective death of dopaminergic neurons. Understanding the neuroprotective effects of chemical reagents has attracted increasing attention. The μ opioid agonist morphine exerts both toxic and protective effects. However, until recently, the neuroprotective role of morphine against 6-hydroxydopamine (6-OHDA)-induced cell death has not been studied. Here, we investigated the effects of morphine on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson's disease. Cell damage was induced by 150 μM 6-OHDA, and the cells' viability was examined by MTT assay. Intracellular calcium, reactive oxygen species (ROS), and mitochondrial membrane potential were determined by the fluorescence spectrophotometry method. Fragmented DNA and biochemical markers of apoptosis were also determined by gel electrophoresis and immunoblotting, respectively. The data showed that 6-OHDA caused a loss of cell viability and mitochondrial membrane potential. In addition, intracellular ROS and calcium levels, activated caspase-3, Bax:Bcl-2 ratio, cytochrome c release, as well as DNA fragmentation were significantly increased in 6-OHDA-treated cells. Incubation of SH-SY5Y cells with morphine (100 μM) elicited a protective effect and reduced biochemical markers of cell damage and death. These results suggest that morphine has neuroprotective effects against 6-OHDA-induced neurotoxicity, and such effects are accompanied by its anti-oxidant, calcium blocking, and anti-apoptotic properties.
Background: Formaldehyde (FA) is one of the most widely used materials in industries and in sciences. Prolonged contact with FA might have harmful effects on fertility due to the increase in the reactive oxygen species level. On the other hand, date palm (Phoenix Dactilifera L.) fruit extract (DPFE) contains a high concentration of natural antioxidants that could scavenge free radicals. Objective: The aim was to investigate the prophylactic effects of DPFE, with strong antioxidant properties, on FA-induced testicular toxicity in male mice. Materials and Methods: Thirty-two adult NMRI male mice with a weight range of 25- 35 gr (9-10 wk old) were randomly divided into four groups: control group (distilled water, orally for 35 days), FA group (FA; 0.25 mg/kg intraperitoneally (i.p.) for 20 days), treatment group (Date (DT) + FA; DPFE, 4 mg/kg for 35 days followed by FA administration, 0.25 mg/kg, i.p., for 20 days), date fruit extract group (DT; DPFE, 4 mg/kg, orally for 35 days). After this, blood was collected and left epididymis and testis tissues were isolated to evaluate the sperm parameters and histological examination, respectively. Results: The FA administration increased the sperm morphological anomalies and reduced the sperm count, viability and motility, and also testosterone compared to the control group (p ≤ 0.001). In addition, histological studies of the testes showed that FA causes changes in the testis seminiferous tubules such as destruction of germinal epithelium and vacuolization of the tubules. The DPFE consumption before FA administration could partially ameliorate the reduced testosterone, sperm, and testicular parameters due to FA. Conclusion: The DPFE use might have discount effects on FA-induced testicular toxicity. Key words: Formaldehyde, Date fruit, Testis, Toxicity, Sperm, Testosterone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.