We study a dynamic social choice problem in which an alternative is chosen at each round according to the reported valuations of a set of agents. In the interests of obtaining a solution that is both efficient and fair, we aim to maximize the long-term Nash welfare, which is the product of all agents' utilities. We present and analyze two greedy algorithms for this problem, including the classic Proportional Fair (PF) algorithm. We analyze several versions of the algorithms and how they relate, and provide an axiomatization of PF. Finally, we evaluate the algorithms on data gathered from a computer systems application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.