There are several alternatives to passive strategies in the early stages of the design process including orientation, window to wall ratio, shading device, material and colour that affect occupants' visual comfort. However, applying simple traditional principles such as using colorful glasses for windows are effective in the optimizing of visual comfort at interior space. The main aim of the current research is investigating the appropriate colors to control direct sunlight for meeting visual comfort criteria based on climatic-luminance metrics. Which combination of them would be more effective for optimizing visual comfort in terms of daylight glare probability? In particular, how can combination of lattice frame and Iranian-Islamic pattern improve visual comfort based on aforementioned metrics? Quantitative approach for evaluating colorful glass daylight performance is relatively rare. Moreover, these studies applied laboratory measurements and numerical calculation for exploring colorful glass performance. However, parametric simulation provides an opportunity for investigating daylight performance of colored glass based on new perspectives. This research reintroduces the main application of colorful glass as a light controller in the window that considerably affects climatic-luminance based metrics containing daylight autonomy (DA), useful daylight illuminance (UDI), exceeded UDI and daylight glare probability (DGP). A combination of quantitative and qualitative research methods have been applied in order to generate hypotheses and then analyze them. Parametric simulation analysis proves that colored glass has the capability to improve occupant's visual comfort during office time. Moreover, an appropriate combination of lattice frame and Iranian-Islamic patterns with colored glass in the Orosi window considerably depends on function, climate and occupant behaviour.
Many recent studies in the field of the kinetic façade developed the grid-based modular forms through primary kinetic movements which are restricted in the simple shapes. However, learning from biological analogies reveals that plants and trees provide adjustable daylighting strategies by means of multilayered and curvature morphological changes. This research builds on a relevant literature study, observation, biomimicry morphological approach (top-down), and parametric daylighting simulation to develop a multilayered biomimetic kinetic façade form, inspired by tree morphology to improve occupants’ daylight performance. The first part of the research uses a literature review to explore how biomimicry influences the kinetic façade’s functions. Then, the study applies the biomimicry morphological approach to extract the formal strategies of tress due to dynamic daylight. Concerning functional convergence, the biomimicry principles are translated to the kinetic façade form configuration and movements. The extracted forms and movements are translated into the design solutions for the kinetic façade resulting in the flexible form by using intersected-multilayered skin and kinetic vectors with curvature movements. The comprehensive annual climate-based metrics and luminance-based metric simulation (625 alternatives) confirm the high performance of the bio-inspired complex kinetic façade for improving occupants’ daylight performance and preventing visual discomfort in comparison with the simple plain window as the base case. The kinetic façade provides daylight performance improvement, especially the best case achieves spatial Daylight Autonomy, Useful Daylight Illuminance, and Exceed Useful Daylight Illuminance of 50.6, 85.5, 7.55 respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.