Normative models are a class of emerging statistical techniques useful for understanding the heterogeneous biology underlying psychiatric disorders at the level of the individual participant. Analogous to normative growth charts used in paediatric medicine for plotting child development in terms of height or weight as a function of age, normative models chart variation in clinical cohorts in terms of mappings between quantitative biological measures and clinically relevant variables. An emerging body of literature has demonstrated that such techniques are excellent tools for parsing the heterogeneity in clinical cohorts by providing statistical inferences at the level of the individual participant with respect to the normative range. Here, we provide a unifying review of the theory and application of normative modelling for understanding the biological and clinical heterogeneity underlying mental disorders. We first provide a statistically grounded yet non-technical overview of the conceptual underpinnings of normative modelling and propose a conceptual framework to link the many different methodological approaches that have been proposed for this purpose. We survey the literature employing these techniques, focusing principally on applications of normative modelling to quantitative neuroimaging-based biomarkers in psychiatry and, finally, we provide methodological considerations and recommendations to guide future applications of these techniques. We show that normative modelling provides a means by which the importance of modelling individual differences can be brought from theory to concrete data analysis procedures for understanding heterogeneous mental disorders and ultimately a promising route towards precision medicine in psychiatry.
In this work, we present DECAF-a multimodal dataset for decoding user physiological responses to affective multimedia content. Different from datasets such as DEAP [15] and MAHNOB-HCI [31], DECAF contains (1) Brain signals acquired using the Magnetoencephalogram (MEG) sensor, which requires little physical contact with the user's scalp and consequently facilitates naturalistic affective response, and (2) Explicit and implicit emotional responses of 30 participants to 40 one-minute music video segments used in [15] and 36 movie clips, thereby enabling comparisons between the EEG vs MEG modalities as well as movie vs music stimuli for affect recognition. In addition to MEG data, DECAF comprises synchronously recorded near-infra-red (NIR) facial videos, horizontal Electrooculogram (hEOG), Electrocardiogram (ECG), and trapeziusElectromyogram (tEMG) peripheral physiological responses. To demonstrate DECAF's utility, we present (i) a detailed analysis of the correlations between participants' self-assessments and their physiological responses and (ii) single-trial classification results for valence, arousal and dominance, with performance evaluation against existing datasets. DECAF also contains timecontinuous emotion annotations for movie clips from seven users, which we use to demonstrate dynamic emotion prediction.
Defining reference models for population variation, and the ability to study individual deviations is essential for understanding inter-individual variability and its relation to the onset and progression of medical conditions. In this work, we assembled a reference cohort of neuroimaging data from 82 sites (N=58,836; ages 2-100) and use normative modeling to characterize lifespan trajectories of cortical thickness and subcortical volume. Models are validated against a manually quality checked subset (N=24,354) and we provide an interface for transferring to new data sources. We showcase the clinical value by applying the models to a transdiagnostic psychiatric sample (N=1,985), showing they can be used to quantify variability underlying multiple disorders whilst also refining case-control inferences. These models will be augmented with additional samples and imaging modalities as they become available. This provides a common reference platform to bind results from different studies and ultimately paves the way for personalized clinical decision making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.