Free-living and parasitic protozoa are known to harbor a variety of endosymbiotic bacteria, although the roles such endosymbionts play in host survival, infectivity, and invasiveness are unclear. We have identified the presence of intracellular bacteria in 14 of 57 (24%) axenically grown Acanthamoeba isolates examined. These organisms are gram negative and non-acid fast, and they cannot be cultured by routine methodologies, although electron microscopy reveals evidence for multiplication within the amoebic cytoplasm. Examination for Legionella spp. with culture and nucleic acid probes has proven unsuccessful. We conclude that these bacteria are endosymbionts which have an obligate need to multiply within their amoebic hosts. Rod-shaped bacteria were identified in 5 of 23 clinical Acanthamoeba isolates (3 of 19 corneal isolates and 2 of 4 contact lens isolates), 4 of 25 environmental Acanthamoeba isolates, and 2 of 9 American Type Culture Collection Acanthamoeba isolates (ATCC 30868 and ATCC 30871) previously unrecognized as having endosymbionts. Coccus-shaped bacteria were present in one clinical (corneal) isolate and two environmental isolates. There was no statistical difference (P > 0.8) between the numbers of endosymbiont strains originating from clinical (26% positive) and environmental (24% positive) amoebic isolates, suggesting that the presence alone of these * Corresponding author.
Acanthamoebae are ubiquitous soil and water bactivores which may serve as amplification vehicles for a variety of pathogenic facultative bacteria and as hosts to other, presently uncultured bacterial endosymbionts. The spectrum of uncultured endosymbionts includes gram-negative rods and gram-variable cocci, the latter recently shown to be members of the Chlamydiales. We report here the isolation from corneal scrapings of two Acanthamoebastrains that harbor gram-negative rod endosymbionts that could not be cultured by standard techniques. These bacteria were phylogenetically characterized following amplification and sequencing of the near-full-length 16S rRNA gene. We used two fluorescently labelled oligonucleotide probes targeting signature regions within the retrieved sequences to detect these organisms in situ. Phylogenetic analyses demonstrated that they displayed 99.6% sequence similarity and formed an independent and well-separated lineage within theRickettsiales branch of the alpha subdivision of theProteobacteria. Nearest relatives included members of the genus Rickettsia, with sequence similarities of approximately 85 to 86%, suggesting that these symbionts are representatives of a new genus and, perhaps, family. Distance matrix, parsimony, and maximum-likelihood tree-generating methods all consistently supported deep branching of the 16S rDNA sequences within the Rickettsiales. The oligonucleotide probes displayed at least three mismatches to all other available 16S rDNA sequences, and they both readily permitted the unambiguous detection of rod-shaped bacteria within intact acanthamoebae by confocal laser-scanning microscopy. Considering the long-standing relationship of mostRickettsiales with arthropods, the finding of a related lineage of endosymbionts in protozoan hosts was unexpected and may have implications for the preadaptation and/or recruitment of rickettsia-like bacteria to metazoan hosts.
Restriction fragment length polymorphism analysis of mitochondrial DNA (mtDNA fingerprinting) was evaluated as an epidemiologic tool for identifying potential reservoirs ofAcanthamoeba infection. Fingerprints for 15 clinical isolates recovered by our affiliated laboratories were compared with those for 25 environmental isolates from western Washington State and 10 American Type Culture Collection (ATCC) strains. Seven different fingerprint groups emerged from the analysis of clinical isolates with six selected restriction enzymes (BamHl, BgIII, EcoRI, Hindlll, Kpnl, and Sall). Fourteen (56%) environmental and 4 (40%) ATCC isolates displayed fingerprints similar to those of clinical isolates. In all, five of the seven groups contained one or more enviro"nmental and/or ATCC isolates. Comparisons with published mtDNA fingerprints for Acanthamoeba isolates showed that two groups have counterparts in Europe and Japan and in Europe and Australia. The inclusion of environmental isolates demonstrated that the most common clinical isolates do have counterparts readily recoverable from the surrounding environmentand that some of these counterparts appear to be geographically widespread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.