The 18 glycosyl hydrolase family of chitinases is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In mammals, despite the absence of endogenous chitin, a number of chitinases and chitinase-like proteins (C/CLPs) have been identified. However, their roles have only recently begun to be elucidated. Acidic mammalian chitinase (AMCase) inhibits chitin-induced innate inflammation; augments chitin-free, allergen-induced Th2 inflammation; and mediates effector functions of IL-13. The CLPs BRP-39/YKL-40 (also termed chitinase 3-like 1) inhibit oxidant-induced lung injury, augments adaptive Th2 immunity, regulates apoptosis, stimulates alternative macrophage activation, and contributes to fibrosis and wound healing. In accord with these findings, levels of YKL-40 in the lung and serum are increased in asthma and other inflammatory and remodeling disorders and often correlate with disease severity. Our understanding of the roles of C/CLPs in inflammation, tissue remodeling, and tissue injury in health and disease is reviewed below.
Most mRNAs contain secondary structure, yet their codons must be in single-stranded form to be translated. Until now, no helicase activity has been identified which could account for the ability of ribosomes to translate through downstream mRNA secondary structure. Using an oligonucleotide displacement assay, together with a stepwise in vitro translation system made up of purified components, we show that ribosomes are able to disrupt downstream helices, including a perfect 27 base pair helix of predicted T(m) = 70 degrees . Using helices of different lengths and registers, the helicase active site can be localized to the middle of the downstream tunnel, between the head and shoulder of the 30S subunit. Mutation of residues in proteins S3 and S4 that line the entry to the tunnel impairs helicase activity. We conclude that the ribosome itself is an mRNA helicase and that proteins S3 and S4 may play a role in its processivity.
Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam3CSK4. Ab-blocking experiments revealed that the effect of Pam3CSK4 was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.
Rationale: Obesity, especially truncal obesity, is a risk factor for asthma incidence, prevalence, and severity. Chitinase 3-like-1 (Chi3l1) is an evolutionarily conserved moiety that plays a critical role in antipathogen and Th2 responses. However, the mechanisms that underlie the association between asthma and obesity and the role(s) of Chi3l1 in fat accumulation have not been defined.Objectives: To determine whether Chi3l1 is regulated by a high-fat diet (HFD) and simultaneously plays an important role(s) in the pathogenesis of asthma and obesity.Methods: We evaluated the regulation of Chi3l1 by an HFD and Th2 inflammation. We also used genetically modified mice to define the roles of Chi3l1 in white adipose tissue (WAT) accumulation and Th2 inflammation and blockers of sirtuin 1 (Sirt1) to define its roles in these responses. Finally, the human relevance of these findings was assessed with a case-control study involving obese and lean control subjects and those with asthma. Measurements and MainResults: These studies demonstrate that an HFD and aeroallergen challenge augment the expression of WAT and pulmonary Chi3l1. Chi3l1 also played a critical role in WAT accumulation and lung Th2 inflammation. In addition, Chi3l1 inhibited Sirt1 expression, and the deficient visceral fat and Th2 responses in Chi3l1 null mice were reversed by Sirt1 inhibition. Finally, serum and sputum Chi3l1 were positively associated with truncal adiposity, and serum Chi3l1 was associated with persistent asthma and low lung function in obese subjects with asthma.Conclusions: Chi3l1 is induced by an HFD and Th2 inflammation, and simultaneously contributes to the genesis of obesity and asthma.
VEGF dampens the expression of microRNA-1, which drives inflammation in part via increasing the expression of Mpl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.