Additive manufacturing has already been established as a highly versatile manufacturing technique with demonstrated potential to completely transform conventional manufacturing in the future. The objective of this paper is to review the latest progress and challenges associated with the fabrication of multi-material parts using additive manufacturing technologies. Various manufacturing processes and materials used to produce functional components were investigated and summarized. The latest applications of multi-material additive manufacturing (MMAM) in the automotive, aerospace, biomedical and dentistry fields were demonstrated. An investigation on the current challenges was also carried out to predict the future direction of MMAM processes. It was concluded that further research and development is needed in the design of multi-material interfaces, manufacturing processes and the material compatibility of MMAM parts.
Metal additive manufacturing (AM) has gained much attention in recent years due to its advantages including geometric freedom and design complexity, appropriate for a wide range of potential industrial applications. However, conventional metal AM methods have high-cost barriers due to the initial cost of the capital equipment, support, and maintenance, etc. This study presents a low-cost metal material extrusion technology as a prospective alternative to the production of metallic parts in additive manufacturing. The filaments used consist of copper, bronze, stainless steel, high carbon iron, and aluminum powders in a polylactic acid matrix. Using the proposed fabrication technology, test specimens were built by extruding metal/polymer composite filaments, which were then sintered in an open-air furnace to produce solid metallic parts. In this research, the mechanical and thermal properties of the built parts are examined using tensile tests, thermogravimetric, thermomechanical and microstructural analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.