Potassium (K+), as a vital element, is involved in regulating important cellular processes such as enzyme activity, cell turgor, and nutrient movement in plant cells, which affects plant growth and production. Potassium channels are involved in the transport and release of potassium in plant cells. In the current study, three OsKAT genes and two OsAKT genes, along with 11 nonredundant putative potassium channel genes in the rice genome, were characterized based on their physiochemical properties, protein structure, evolution, duplication, in silico gene expression, and protein–protein interactions. In addition, the expression patterns of OsAKTs and OsKATs were studied in root and shoot tissues under salt stress using real-time PCR in three rice cultivars. K+ channel genes were found to have diverse functions and structures, and OsKATs showed high genetic divergence from other K+ channel genes. Furthermore, the Ka/Ks ratios of duplicated gene pairs from the K+ channel gene family in rice suggested that these genes underwent purifying selection. Among the studied K+ channel proteins, OsKAT1 and OsAKT1 were identified as proteins with high potential N-glycosylation and phosphorylation sites, and LEU, VAL, SER, PRO, HIS, GLY, LYS, TYR, CYC, and ARG amino acids were predicted as the binding residues in the ligand-binding sites of K+ channel proteins. Regarding the coexpression network and KEGG ontology results, several metabolic pathways, including sugar metabolism, purine metabolism, carbon metabolism, glycerophospholipid metabolism, monoterpenoid biosynthesis, and folate biosynthesis, were recognized in the coexpression network of K+ channel proteins. Based on the available RNA-seq data, the K+ channel genes showed differential expression levels in rice tissues in response to biotic and abiotic stresses. In addition, the real-time PCR results revealed that OsAKTs and OsKATs are induced by salt stress in root and shoot tissues of rice cultivars, and OsKAT1 was identified as a key gene involved in the rice response to salt stress. In the present study, we found that the repression of OsAKTs, OsKAT2, and OsKAT2 in roots was related to salinity tolerance in rice. Our findings provide valuable insights for further structural and functional assays of K+ channel genes in rice.
BackgroundThe use of stably expressed genes as normalizers has crucial role in accurate and reliable expression analysis estimated by quantitative real-time polymerase chain reaction (qPCR). Recent studies have shown that, the expression levels of common housekeeping genes are varying in different tissues and experimental conditions. The genomic DNA contamination in RNA samples is another important factor that also influence the interpretation of the data obtained from qPCR. It is estimated that the gDNA contamination in gene expression analysis lead to an overestimation of the RNA transcript level. The aim of this study was to validate the most stably expressed reference genes in two different tissues of Aeluropus littoralis—halophyte grass at salt stress and recovery condition. Also, a qPCR-based approach for monitoring contamination with gDNA was conducted.ResultsTen candidate reference genes participating in different biological processes were analyzed in four groups of samples including root and leaf tissues, salt stress and recovery condition. To determine the most stably expressed reference genes, three statistical methods (geNorm, NormFinder and BestKeeper) were applied. According to results obtained, ten candidate reference genes were ranked based on the stability of their expression. Here, our results show that a set of four housekeeping genes (HKGs) e.g. RPS3, EF1A, GTF and RPS12 could be used as general reference genes for the all selected conditions and tissues. Also, four set of reference genes were proposed for each tissue and condition including: RPS3, EF1A and UBQ for salt stress and root samples; RPS3, EF1A, UBQ as well as GAPDH for recovery condition; U2SURP and GTF for leaf samples. Additionally, for assessing DNA contamination in RNA samples, a set of unique primers were designed based on the conserved region of ribosomal DNA (rDNA). The universality, specificity and sensitivity of these primer pairs were also evaluated in Poaceae.ConclusionsOverall, the sets of reference genes proposed in this study are ideal normalizers for qPCR analysis in A.littoralis transcriptome. The novel reference gene e.g. RPS3 that applied this study had higher expression stability than commonly used housekeeping genes. The application of rDNA-based primers in qPCR analysis was addressed.Electronic supplementary materialThe online version of this article (doi:10.1186/s40709-016-0053-8) contains supplementary material, which is available to authorized users.
Background: The use of wild plant species or their halophytic relatives has been considered in plant breeding programs to improve salt and drought tolerance in crop plants. Aeluropus littoralis serves as halophyte model for identification and isolation of novel stress adaptation genes. This species is described as perennial monocot grass. A. littoralis grows in damp or arid areas, often salt-impregnated places and waste land in cultivated areas. A. littoralis can survive where the water salinity is periodically high and tolerate high salt concentrations in the soil up to 1100 mM sodium chloride. Therefore, it serves as valuable genetic resource to understand molecular mechanisms of stress-responses in monocots. The knowledge can potentially be used for improving tolerance to abiotic stresses in economically important crops. Several morphological, anatomical, ecological, and physiological traits of A. littoralis have been investigated so far and also the transfer of stress related genes to other species resulted in enhanced stress resistance. After watering with salt water the grass is able to excrete salt via its salt glands. Meanwhile, a number of ESTs (expressed sequence tag), genes and promoters induced by the salt and drought stresses were isolated, sequenced and annotated at a molecular level.Results: Here we describe the genome sequence and structure of A. littoralis analyzed by whole genome sequencing and histological analysis. The chromosome number was determined to be 20 (2n = 2X = 20), absence of B chromsomes shown, and the genome size calculated to be 354 Megabasepairs.Conclusions: This genomic information provided here, will support the functional investigation and application of novel genes improving salt stress resistance in crop plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.