The high-spin rotational bands in 168 Hf and the triaxial bands in Lu nuclei are analyzed using the configuration-constrained cranked Nilsson-Strutinsky (CNS) model. Special attention is given to the up-sloping extruder orbitals. The relative alignment between the bands which appear to correspond to triaxial shape is also considered, including the yrast ultrahigh-spin band in 158 Er. This comparison suggests that the latter band is formed from rotation around the intermediate axis. In addition, the standard approximations of the CNS approach are investigated, indicating that the errors which are introduced by the neglect of off-shell matrix elements and the cutoff at nine oscillator shells (N max = 8) are essentially negligible compared to other uncertainties. On the other hand, the full inclusion of the hexadecapole degree of freedom is more significant; for example it leads to a decrease of the total energy of ∼ 500 keV in the triaxial superdeformed (TSD) region of 168 Hf.
In computed tomography (CT), some superficial organs which have increased sensitivity to radiation, receive doses that are significant enough to be matter of concern. Therefore, in this study, the effects of using shields on the amount of dose reduction and image quality was investigated for pediatric imaging. Absorbed doses of breasts, eyes, thyroid and testes of a series of pediatric phantoms without and with different thickness of bismuth and lead were calculated by Monte Carlo simulation. Appropriate thicknesses of shields were chosen based on their weights, X-ray spectrum, and the amount of dose reduction. In addition, the effect of lead shield on image quality of a simple phantom was assessed quantitatively using region of interest (ROI) measurements. Considering the maximum reduction in absorbed doses and X-ray spectrum, using a lead shield with a maximum thickness of 0.4 mm would be appropriate for testes and thyroid and two other organs (which are exposed directly) should be protected with thinner shields. Moreover, the image quality assessment showed that lead was associated with significant increases in both noise and CT attenuation values, especially in the anterior of the phantom. Overall, the results suggested that shielding is a useful optimization tool in CT.
To design a diagnostic or therapeutic irradiation programme, there is a need to estimate the absorbed dose. In this investigation, specific absorbed fractions (SAFs) were calculated based on Cristy and Eckerman's analytical adult phantom, by MCNP4C Monte Carlo code. SAFs were estimated with uncertainty <3%, for about 600 source organ-target organ pairs at 12 photon energies (these data are available at http://www.um.ac.ir/~mirihakim). Then these results were compared with Cristy and Eckerman's, which were based on direct Monte Carlo, reciprocity principle and point source kernel methods. Also, agreements and disagreements between them for different states were discussed.
As a consequence of fetal radiosensitivity, the estimation of internal dose received by a fetus from radiopharmaceuticals applied to the mother is often important in nuclear medicine. A new 9-months pregnant phantom based on magnetic resonance (MR) images tied to the International Commission on Radiological Protection (ICRP) reference voxel phantom has been developed. Maternal and fetal organs were segmented from a set of pelvic MR images of a 9-months pregnant subject using 3D-DOCTORTM and then imported into the 3D modeling software package RhinocerosTM for combining with the adult female ICRP voxel phantom and further modeling. Next, the phantom organs were rescaled to match with reference masses described in ICRP Publications. The internal anatomy of previous pregnant phantom models had been limited to the fetal brain and skeleton only, but the fetus model developed in this study incorporates 20 different organs. The current reference phantom has been developed for application in comprehensive dosimetric study in nuclear medicine. The internal dosimetry calculations were performed for thyroid agents using the Monte Carlo transport method. Biokinetic data for these radiopharmaceuticals were used to estimate cumulated activity during pregnancy and maternal and fetal organ doses at seven different maximum thyroid uptake levels. Calculating the dose distribution was also presented in a sagittal view of the pregnant model utilizing the mesh tally function. The comparisons showed, in general, an overestimation of the absorbed dose to the fetus and an underestimation of the fetal thyroid dose in previous studies compared with the values based on the current hybrid phantom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.