There is no doubt that rechargeable batteries will play a huge role in the future of the world. Sodium-ion (Na-ion) batteries might be the ideal middle-ground between high performance delivered...
Hard carbons are the leading candidate anode materials for sodium-ion batteries. However, the sodium-insertion mechanisms remain under debate. Here, employing a novel analysis of operando and ex situ pair distribution function (PDF) analysis of total scattering data, supplemented by information on the local electronic structure provided by operando 23 Na solid-state NMR, we identify the local atomic environments of sodium stored within hard carbon and provide a revised mechanism for sodium storage. The local structure of carbons is well-described by bilayers of curved graphene fragments, with fragment size increasing, and curvature decreasing with increasing pyrolysis temperature. A correlation is observed between the higher-voltage (slope) capacity and the defect concentration inferred from the size and curvature of the fragments. Meanwhile, a larger lower-voltage (plateau) capacity is observed in samples modeled by larger fragment sizes. Operando PDF data on two commercially relevant hard carbons reveal changes at higher-voltages consistent with sodium ions stored close to defective areas of the carbon, with electrons localized in the antibonding π*-orbitals of the carbon. Metallic sodium clusters approximately 13−15 Å in diameter are formed in both carbons at lower voltages, implying that, for these carbons, the lower-voltage capacity is determined by the number of regions suitable for sodium cluster formation, rather than by having microstructures that allow larger clusters to form. Our results reveal that local atomic structure has a definitive role in determining storage capacity, and therefore the effect of synthetic conditions on both the local atomic structure and the microstructure should be considered when engineering hard carbons.
An effective strategy is proposed to enhance the oxygen reduction reaction (ORR) performance of multiwall carbon nanotubes (MWCNTs) in both acid and alkaline electrolytes by coating them with a layer of biomass derivative N‐doped hydrothermal carbons. The N‐doped amorphous carbon coating plays triple roles: it (i) promotes the assembly of MWCNTs into a 3D network therefore improving the mass transfer and thus increasing the catalytic activity; (ii) protects the Fe‐containing active sites, present on the surface of the MWCNTs, from H2O2 poisoning; (iii) creates nitrogenated active sites and hence further enhances ORR activity and robustness.
Ammonia borane (AB) is among the most promising precursors for the large-scale synthesis of hexagonal boron nitride (h-BN) by chemical vapour deposition (CVD). Its non-toxic and non-flammable properties make AB particularly attractive for industry. AB decomposition under CVD conditions, however, is complex and hence has hindered tailored h-BN production and its exploitation. To overcome this challenge, we report in-depth decomposition studies of AB under industrially safe growth conditions. In situ mass spectrometry revealed a time and temperature-dependent release of a plethora of NxBy-containing species and, as a result, significant changes of the N:B ratio during h-BN synthesis. Such fluctuations strongly influence the formation and morphology of 2D h-BN. By means of in situ gas monitoring and regulating the precursor temperature over time we achieve uniform release of volatile chemical species over many hours for the first time, paving the way towards the controlled, industrially viable production of h-BN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.