Ebselen is an organoselenium compound which has strong antioxidant and anti-inflammatory effects. We investigated the neuroprotective role of ebselen pretreatment in rats with experimental sciatic nerve ischemia-reperfusion (I/R) injury. Adult male Sprague Dawley rats were divided into four groups (N = 7 in each group). Before sciatic nerve I/R was induced, ebselen was injected intraperitoneally at doses of 15 and 30 mg/kg. After a 2 h ischemia and a 3 h reperfusion period, sciatic nerve tissues were excised. Tissue levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured. Sciatic nerve tissues were also examined histopathologically. The 15 mg/kg dose of ebselen reduced sciatic nerve damage and apoptosis (P < 0.01), levels of MDA, NO, and inducible nitric oxide synthase (iNOS) positive cells (P < 0.01, P < 0.05, respectively), and increased SOD, GPx, and CAT activities (P < 0.001, P < 0.01, P < 0.05, respectively) compared with the I/R group that did not receive ebselen. Conversely, the 30 mg/kg dose of ebselen increased sciatic nerve damage, apoptosis, iNOS positive cells (P < 0.01, P < 0.05, P < 0.001) and MDA and NO levels (P < 0.05, P < 0.01) and decreased SOD, GPx, and CAT activities (P < 0.05) compared with the sham group. The results of this study suggest that ebselen may cause different effects depending on the dose employed. Ebselen may be protective against sciatic nerve I/R injury via antioxidant and antiapoptotic activities at a 15 mg/kg dose, conversely higher doses may cause detrimental effects.
Background: Alpha lipoic acid is a potent antioxidant that plays numerous roles in human health. This study examined the effect of ALA on rat sciatic nerve ischemia reperfusion damage. Aims: Protective effect of alpha lipoic acid (ALA) on sciatic nerve following ischemia-reperfusion in rats was investigated by using light microscopy and biochemical methods. Provided that the protective effect of ALA on sciatic nerve is proven, we think the damage to the sciatic nerve that has already occurred or might occur in patients for various reasons maybe prevented or stopped by giving ALA in convenient doses. Study Design: Animal experiment. Methods: Forty-two adult male Sprague-Dawley rats (250-300 grams) were used in this study. Rats were randomly divided into six groups including one control (Group 1), one sham (Group 2), two ischemia-reperfusion (Groups 3 and 4) and two treatment groups (Groups5 and 6). Doses of 60 and 100 mg/kg ALA were given (Group 5 and 6) intra peritoneally twice, 1 and 24 hours before the ischemia to each treatment group. Ischemia was carried out the abdominal aorta starting from the distal part of the renal vein for two hours followed by reperfusion for three hours. In immunohistochemical methods, fibronectin immunoreactivity was analyzed. For biochemical analyses, the tissues were taken in eppendorf microtubes and superoxide dismutase (SOD) and glutathione peroxidase (GSHPx) enzyme activities as well as malondialdehyde (MDA) and nitricoxide (NO) levels were measured. Results: Fibronectin was observed to have increased significantly in the ischemia group; on the other hand, it was observed to have decreased in parallel to the doses in the ALA groups. Biochemical studies showed that SOD and GSHPx declined with ischemia-reperfusion, but the activities of these enzymes were increased in the treatment groups in parallel with the dose. It was found that increased MDA levels with ischemia-reperfusion were decreased in parallel with ALA dose. There were no statistically significant changes in NO. Conclusion: Increased fibronectin observed after ischemia/reperfusion of rat sciatic nerve is reduced after the administration of ALA. This indicates that the function of fibronectin, to reconnect cut nerve segments and regenerate nerves, is more prominent than its function in tissue healing after ischemia. ALA administered before ischemia decreases MDA and increases SOD and GSHPx. We think that ALA may protect against the pathological changes in ischemic nerve and may be used to devise more efficient treatments. Keywords: Alpha lipoic acid, ischemia-reperfusion, sciatic nerve, rat
These results suggest that the upper body anthropometry and respiratory function relations might have impaired in patients with PCOS. We think that this situation might support the increased tendency for poor health status in patients with PCOS.
No abstract
The hepatic and renal veins drain into the inferior vena cava. The upper group of hepatic veins consists of three veins and these extend to the posterior face of the liver to join the inferior vena cava (Figure 1). The complexities of liver surgery and advances in operation techniques involving the liver have made variations in this region more important (1). The left renal vein passes anterior to the aorta just below the origin of superior mesenteric artery. Knowledge of a patient's left renal vein anomalies is important in planning retroperitoneal surgery and vascular interventions and also in the differential diagnosis of retroperitoneal lymphadenopathies (2). Case ReportWe detected a variation in the hepatic and renal veins in the multislice CT angiogram of a nine-year-old male patient in Radiology Department of Afyon Kocatepe University Medical School. The CT angiogram was performed using a Philips Brilliance CT (Philips Medical Systems, Netherlands). The upper group hepatic veins normally drain into the inferior vena cava as three separate trunks, namely the right, left and middle. In our case, we found that only the right and left hepatic veins existed and the middle hepatic vein (MHV) was absent ( Figure 2). Furthermore, the left renal vein was retro-aortic ( Figure 3). DiscussionThe definitive portal vein originates from the two vitelline veins (and the intervitelline anastomosis) and from the left umbilical vein. At the end of the complex process occurring between the third and the sixth week of embryological development, the trunk of the portal vein is formed by the interconnected vitelline veins (3).The embryological development of the hepatic parenchyma takes place independently within the development of the vascular system. After the 35 th day of gestation, the development of the vascular system has to adapt to the rapid growth of the hepatic parenchyma; allometric development makes the left lobe of the liver smaller than the right lobe (4).During the fifth to the seventh week, a number of additional veins are formed: (a) the subcardinal veins, which mainly drain the kidneys; (b) the sacrocardinal veins, which drain the lower extremities and (c) the supracardinal veins, which drain the body wall by way of the intercostal veins, taking over the functions of the posterior cardinal veins. The anastomosis between the subcardinal veins forms the left renal vein. When this communication has been established, the left subcardinal vein disappears, and only its distal portion remains as the left gonadal vein. Hence, the right subcardinal vein becomes the main drainage channel and develops into the renal segment of the inferior vena cava (5).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.