Numerical experiments are systematically carried out using the Lee model code extended to compute the ion beams on various plasma focus devices operated with Deuterium gas. The deuteron beam properties of the plasma focus are studied for low and high energy plasma focus device. The energy spectral distribution for deuteron ions ejected from the pinch plasma is calculated and the ion numbers with energy around 1 MeV is then determined. The deuteron-graphite target interaction is studied for different conditions. The yield of the reaction 12 C(d,n) 13 N and the induced radioactivity for one and multi shots plasma focus devices in the graphite solid target is investigated. Our results present the optimized high energy repetitive plasma focus devices as an alternative to accelerators for the production of 13 N short lived radioisotopes. However, technical challenges await solutions on two fronts: (a) operation of plasma focus machines at high rep rates for a sufficient period of time (b) design of durable targets that can take the thermal load. V
The indicative values of reduced Pease–Braginskii (P–B) currents are estimated for a nitrogen and oxygen plasma focus. The values of depletion times indicate that in N2 and O2 with estimated 3–4% of pinch energy radiating away over the duration of the pinch, we may expect some cooling effects leading to small reductions in radius ratio. In other gases with higher atomic number, the pinch duration is much more than the depletion time, so radiative contraction may be anticipated. The Lee model was employed to study the soft X-ray from PF1000 operated with nitrogen and oxygen. We found nitrogen soft X-ray yield in the water window region of 3.13 kJ, with the corresponding efficiency of 0.9% of the stored energy [Formula: see text], while for the oxygen it was found to be [Formula: see text] = 4.9 kJ, with the efficiency of 1.4% [Formula: see text]. The very modest enhancement of compression (radius ratios around 0.1) in the pinches of these two gases gives rise to rather modest pinch energy densities (PEDs) under 109 Jm[Formula: see text]. This is in contrast to Kr or Xe where it had been shown that the radiative collapse leads to radius ratios of 0.007 and 0.003, respectively, with PEDs going to large values considerably exceeding 10[Formula: see text] Jm[Formula: see text].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.