Placental growth factor (PGF) is abundantly expressed by trophoblast cells within human placentae and is important for trophoblast development and placental vascularization. Circulating maternal serum levels of PGF are dynamically upregulated across gestation in normal pregnancies, whereas low circulating levels and placental production of PGF have been implicated in the pathogenesis of preeclampsia and other gestational diseases. However, the underlying molecular mechanism of regulating PGF expression in the human placenta remains poorly understood. In this study, we demonstrated that transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) were both sufficient and required for PGF expression in human trophoblast-derived cells by overexpression and knockdown approaches. Surprisingly, while DLX3 and GCM1 were both positive regulators of PGF, co-overexpression of DLX3 and GCM1 led to an antagonist effect on PGF expression on the endogenous gene and a luciferase reporter. Further, deletion and site-directed mutagenesis studies identified a novel regulatory element on the PGF promoter mediating both DLX3- and GCM1-dependent PGF expression. This regulatory region was also found to be essential for the basal activity of the PGF promoter. Finally, Chromatin-immunoprecipitation (ChIP) assays revealed colocalization of DLX3 and GCM1 at the identified regulatory region on the PGF promoter. Taken together, our studies provide important insights into intrinsic regulation of human placental PGF expression through the functional coordination of DLX3 and GCM1, and are likely to further the understanding of pathogenesis of PGF dysregulation in preeclampsia and other disease conditions.
The placental transcription factors Distal-less 3 (DLX3) and Glial cell missing-1 (GCM1) have been shown to coordinate the specific regulation of PGF in human trophoblast cell lines. While both factors independently have a positive effect on PGF gene expression, when combined, DLX3 acts as an antagonist to GCM. Despite this understanding, potential mechanisms accounting for this regulatory interaction remain unexplored. We identify physical and functional interactions between specific domains of DLX3 and GCM1 in human trophoblast-derived cells by performing immunoprecipitation and mammalian one hybrid assays. Studies revealed that DLX3 binding reduced the transcriptional activity of GCM1, providing a mechanistic explanation of their functional antagonism in regulating PGF promoter activity. The DLX3 homeodomain (HD) was essential for DLX3-GCM1 interaction, and that the HD together with the DLX3 amino- or carboxyl-terminal domains was required for maximal inhibition of GCM1. Interestingly, a naturally occurring DLX3 mutant that disrupts the carboxyl-terminal domain leading to tricho-dento-osseous syndrome in humans displayed activities indistinguishable from wild type DLX3 in this system. Collectively, our studies demonstrate that DLX3 physically interacts with GCM1 and inhibits its transactivation activity, suggesting that DLX3 and GCM1 may form a complex to functionally regulate placental cell function through modulation of target gene expression.
Matrix metalloproteinases (MMPs) are enzymes that regulate extracellular matrix composition and contribute to cell migration. Microarray studies in mouse placenta suggested that MMP-9 transcript abundance was dependent on distal-less 3 (Dlx3), a placental-specific transcriptional regulator; however, it was not clear if this was a direct or indirect effect. Here we investigate mechanism(s) for Dlx3-dependent MMP-9 gene transcription and gelatinase activity in placental trophoblasts. Initial studies confirmed that MMP-9 activity was reduced in placental explants from Dlx3(-/-) mice and that murine MMP-9 promoter activity was induced by Dlx3 overexpression. Two binding sites within a murine MMP-9 promoter fragment bound Dlx3, and mutations in both elements reduced basal MMP-9-luciferase reporter activity and abolished regulation by Dlx3. Chromatin immunoprecipitation studies in JEG3 cells confirmed Dlx3 binding to the endogenous human MMP-9 promoter at three distinct sites and knockdown of human Dlx3 resulted in reduced endogenous MMP-9 transcripts and secreted activity. These studies provide novel evidence that Dlx3 is involved directly in the transcriptional regulation of mouse and human MMP-9 gene expression in placental trophoblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.