One of the major impediments in the design and operation of a full-duplex radio transceiver is the presence of self-interference (SI), that is, the transceiver’s transmitted signal, 60–100 dB stronger than the desired signal of interest. To reduce the SI signal below the receiver’s sensitivity before coupling it to the receiver, radio frequency (RF)/analog domain cancellation is carried out. Even after SI cancellation to the required level in the analog domain, the residual SI signal still exits and lowers the transceiver’s performance. For residual SI cancellation, a digital domain cancellation is carried out. RF impairments are the major obstacle in the residual SI cancellation path in the digital domain. Linearization of RF impairments such as IQ mixer imbalance in the transmitter and receiver chain, non-linear PA with memory, and non-linear LNA are also carried out. Performance evaluation of the proposed techniques is carried out based on SINR, the power of different SI signal components, PSD, output to input relationship, SNR vs. BER, spectrum analyzer, constellation diagram, and link budget analysis. The proposed techniques provide attractive RF/analog SI cancellation of up to 80–90 dB, digital residual SI cancellation of up to 35 to 40 dB, total SI cancellation of up to 110 to 130 dB, and an SINR improvement of up to 50 dB.
Abstract-This research concerns offline identification of acoustic characteristics of enclosures with second-order resonant dynamics and their modeling as linear dynamic systems. The applied models can be described by basis function expansions. The practical problem of acoustic echo in enclosures is used as the target problem to be addressed. It has been found out that the classical filters are ineffective filter structures for approximating an echo generating system, due to their many required parameters. In order to reduce the number of estimated parameters, alternative methods for modeling the room impulse response need to be investigated. Out of various available techniques impulse response identification is utilized. With the help of given experimental data, the enclosures' impulse response is modeled using special orthonormal basis functions called Kautz functions. As another improved approximation, hybrid multistage system identifiers have been used in which the simplicity of classical filter structures and fast convergence of orthonormal structures is utilized as an advantage.
This work presents two dual polarized proximity-fed monostatic patch antennas with improved interport isolation for 2.4 GHz industrial, scientific and medical band same frequency full duplex wireless applications. The presented antennas achieves the high interport decoupling through intrinsic isolation of the polarization diversity in conjunction with a simple single-tap and two-taps self-interference cancellation (SIC) topologies. The polarization diversity isolation is achieved through two perpendicular microstrip feeds for proximity feeding to excite orthogonal polarization mode for transmit (T x) and receive (R x) modes. The prototype for proposed antenna with integrated single-tap and two-taps SIC circuit is tested to record its interport isolation, impedance bandwidths and gains for both T x and R x ports. The implemented antenna with single-tap SIC circuit demonstrates 10 dB return-loss bandwidth of ≥100 MHz for both T x and R x ports. The measured isolation exceeds 40 dB over the 40 MHz bandwidth. Moreover, the recorded peak isolation is better than 74 dB for implemented antenna prototype. Furthermore, the 40 MHz bandwidth with 40 dB isolation can be tuned with the help of SIC-tap as demonstrated through the experimental results. The measured gain levels are around 4.6 dBi for both T x and R x port. The same antenna structure with integrated two-taps SIC topology features better than 55 dB isolation within 10 dB return loss bandwidth of 100 MHz. The peak isolation exceeds 97 dB and isolation levels are better than 60 and 80 dB over 50 and 20 MHz bandwidths, respectively, for presented antenna with two-taps SIC configuration. The compact antenna offers comparatively wider impedance and isolation bandwidth with improved SIC levels compared to previous designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.