The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
In recent years with regard to the development of nanotechnology and neural stem cell discovery, the combinatorial therapeutic strategies of neural progenitor cells and appropriate biomaterials have raised the hope for brain regeneration following neurological disorders. This study aimed to explore the proliferation and neurogenic effect of PLGA and PLGA-PEG nanofibers on human SH-SY5Y cells in in vitro condition.Nanofibers of PLGA and PLGA-PEG biomaterials were synthesized and fabricated using electrospinning method. Physicochemical features were examined using HNMR, FT-IR, and water contact angle assays. Ultrastructural morphology, the orientation of nanofibers, cell distribution and attachment were visualized by SEM imaging. Cell survival and proliferation rate were measured. Differentiation capacity was monitored by immunofluorescence staining of Map-2. HNMR, FT-IR assays confirmed the integration of PEG to PLGA backbone. Water contact angel assay showed increasing surface hydrophilicity in PLGA-PEG biomaterial compared to the PLGA substrate. SEM analysis revealed the reduction of PLGA-PEG nanofibers' diameter compared to the PLGA group. Cell attachment was observed in both groups while PLGA-PEG had a superior effect in the promotion of survival rate compared to other groups (p < .05). Compared to the PLGA group, PLGA-PEG increased the number of Ki67 + cells (p < .01). PLGA-PEG biomaterial induced neural maturation by increasing protein Map-2 compared to the PLGA scaffold in a three-dimensional culture system.According to our data, structural modification of PLGA with PEG could enhance orientated differentiation and the dynamic growth of neural cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.