To report the results of whole liver decellularization by two different methods. To present the results of grafting rat and sheep decellularized liver matrix (DLM) into the normal rat liver and compare natural cell seeding process in homo/xenograft of DLM. To compare the results of in vitro whole liver recellularization with rats' neonatal green fluorescent protein (GFP)-positive hepatic cells with outcomes of in vivo recellularization process. Whole liver of 8 rats and 4 sheep were resected and cannulated via the hepatic vein and perfused with sodium dodecyl sulfate (SDS) or Triton + SDS. Several examinations were performed to compare the efficacy of these two decellularization procedures. In vivo recellularization of sheep and rat DLMs was performed following transplantation of multiple pieces of both scaffolds in the subhepatic area of four rats. To compare the efficacy of different scaffolds in autologous cell seeding, biopsies of homograft and xenograft were assessed 8 weeks postoperatively. Whole DLMs of 4 rats were also recellularized in vitro by perfusion of rat's fetal GFP-positive hepatic cells with pulsatile bioreactor. Histological evaluation and enzymatic assay were performed for both in vivo and in vitro recellularized samples. The results of this study demonstrated that the triton method was a promising decellularization approach for preserving the three-dimensional structure of liver. In vitro recellularized DLMs were more similar to natural ones compared with in vivo recellularized livers. However, homografts showed better characteristics with more organized structure compared with xenografts. In vitro recellularization of liver scaffolds with autologous cells represents an attractive prospective for regeneration of liver as one of the most compound organs. In vivo cell seeding on the scaffold of the same species may have more satisfactory outcomes when compared with the results of xenotransplantation. This study theoretically may pave the road for in situ liver regeneration probably by implantation of homologous DLM or in vitro recellularized scaffolds into the diseased host liver.
The aim of this study was to investigate the effect of three different scaffolds on the viability and differentiation of adipose-derived mesenchymal stem cells (ADMSCs) to osteoblast for bone regeneration of calvarial defect in rabbit model. Adipose was harvested from the nape of 12 rabbits by direct surgery or hollow-tip cannula. Two standardized circular calvarial defects (case and control), 8 mm in diameter each, were created in all the animals. The animals were divided into 3 different groups. In group 1 (G1), the defect was filled with polyamide + ADMSC. In group 2, poly lactic-co-glycolic acid + ADMSC was used. In group 3, decellularized amniotic membrane + ADMSC was applied. In the control defect, the non-seeded scaffolds were applied for filling the defect. Decellularized pericardial scaffolds were used as a membrane on the scaffolds. The animals were euthanized 2, 4, and 8 weeks of operation and new bone formation was assessed by different analyses. Immunohistochemical (IHC) staining with osteopontin and osteocalcin antibodies was also performed. After 2 weeks of wound healing, minimal bone regeneration was detected in all groups. Almost complete defect closure was observed in all experimental groups after 8 weeks of operation, with the greatest defect closure in the animals treated with polyamide scaffolds as compared to biopsies obtained from control defects and other experimental groups. The maximal tensile load was higher in G1, 4 and 8 weeks postoperatively, suggesting the usefulness of polyamide + ADMSC for bone regeneration in calvarial defects. Results of the IHC staining demonstrated a significant difference between seeded and non-seeded scaffold in both short- and long-term follow-ups (P < 0.05). In addition, a significant difference was observed in enhancement of IHC staining of both markers in polyamide group (seeded or non-seeded) 4 and 8 weeks postoperatively in comparison with other scaffolds. It was concluded that bone regeneration in critical calvarial defect was more successful in seeded polyamide.
This study demonstrated the feasibility of using a natural bioreactor for recellularizing DTS; this may have the potential to facilitate homologous transplantation for repairing segmental trachea defects.
The aim of the present study was to demonstrate the regaining histological characteristics of bioengineered external anal sphincters (EAS) in rabbit fecal incontinence model. The EAS of 16 rabbits were resected and decellularized. The decellularized scaffolds were transplanted to the terminal rectum following a period of 6 months of fecal incontinency (5 days after sterilization). The rabbits were divided into two groups: in group 1 (n = 8), myogenic satellite cells were injected into the transplanted sphincters. In group 2 (n = 8), the transplanted scaffolds remained in situ without cellular injection. The histological evaluation was performed with desmin, myosin, smooth muscle actin, CD31, and CD34 at 3-month intervals. The rabbits were followed for 2 years. Electromyography (EMG) with needle and electrical stimulation, pudendal and muscle electrical stimulation were also performed after 2 years of transplantation. At the time of biopsy, no evidence of inflammation or rejection was observed and the transplanted EAS appeared histologically and anatomically normal. The immunohistochemistry staining validated that the histological features of EAS was more satisfactory in group 1 in short-term follow-up. However, no statistically significant difference was detected between two groups in long-term follow-ups (p value > 0.05). In both groups, grafted EAS contracted in response to electrical signals delivered to the muscle and the pudendal nerve. However, more signals were detected in group 1 in EMG evaluation. In conclusion, bioengineered EAS with myogenic satellite cells can gain more satisfactory histological outcomes in short-term follow-ups with better muscle electrical stimulation outcomes.
ObjectiveTo investigate the feasibility of a new approach for cystoplasty using autologous smooth muscle cell (SMC) sheet and scaffold-less bladder tissue engineering with the main focus on histological outcomes in a rabbit model. Materials and MethodsIn all, 24 rabbits were randomly divided into two groups. In the experimental group, SMCs were obtained from the bladder muscular layer, labelled with PKH-26, and seeded on temperature-responsive culture dishes. Contiguous cell sheets were noninvasively harvested by reducing the temperature and triple-layer cell-dense tissues were constructed. After partial detrusorectomy, the engineered tissue was transplanted onto the urothelial diverticulum. The control group underwent partial detrusorectomy followed by peritoneal fat coverage. At 2, 4, and 12 weeks the rabbits were humanely killed and haematoxylin and eosin, Masson's trichrome, cluster of differentiation 34 (CD34), CD31, CD3, CD68, α-smooth muscle actin (α-SMA), picrosirius red, and pentachrome staining were used to evaluate bladder reconstruction. ResultsAt 2 weeks after SMC-sheet grafting, PKH-26 labelled SMCs were evident in the muscular layer. At 4 weeks, 79.1% of the cells in the muscular layer were PKH-positive cells. The portion of the muscular layer increased in the experimental group during the follow-up and was similar to normal bladder tissue after 12 weeks. α-SMA staining showed well organised muscle at 4 and 12 weeks. CD34+ endothelial progenitor cells and CD31+ microvessels increased continuously and peaked 4 and 12 weeks after grafting, respectively. ConclusionIn the present study, we show that autologous SMC-sheet grafting has the potential for reliable bladder reconstruction and is technically feasible with a favourable evolution over the 12 weeks following implantation. Our findings could pave the way toward future bladder tissue engineering using the SMC-sheet technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.