This paper presents an optimal design of alkaline–surfactant–polymer (ASP) flooding and an experimental analysis on the effects of ASP components under low formation salinity, where the assignment of salinity gradients and various phase types are limited. The phase behavior and coreflooding tests confirmed the ASP formula is optimal, i.e., 1 wt % sodium carbonate (Na2CO3) as the alkaline, 1:4 weight ratio for linear alkylbenzene sulfonate (LAS) and dioctyl sulfosuccinate (DOSS) as a surfactant, 5 wt % diethylene glycol monobutyl ether (DGBE) as a co-solvent, and hydrolyzed polyacrylamide (HPAM) as a polymer. The salinity scan was used to determine that the optimum salinity was around 1.25 wt % NaCl and its solubilization ratio was favorable, i.e., approximately 21 mL/mL. The filtration ratio determines the polymer concentrations, i.e., 3000 or 3300 mg/L, with a reduced risk of plugging through pore throats. The coreflooding test confirmed the field applicability of the proposed ASP formula with an 86.2% recovery rate of residual oil after extensive waterflooding. The optimal design for ASP flooding successfully generated phase types through the modification of salinity and can be applicable to the low-salinity environment.
This paper presents a nonionic surfactant in the anionic surfactant pair (ternary mixture) that influences the hydrophobicity of the alkaline–surfactant–polymer (ASP) slug within low-salinity formation water, an environment that constrains optimal designs of the salinity gradient and phase types. The hydrophobicity effectively reduced the optimum salinity, but achieving as much by mixing various surfactants has been challenging. We conducted a phase behavior test and a coreflooding test, and the results prove the effectiveness of the nonionic surfactant in enlarging the chemical applicability by making ASP flooding more hydrophobic. The proposed ASP mixture consisted of 0.2 wt% sodium carbonate, 0.25 wt% anionic surfactant pair, and 0.2 wt% nonionic surfactant, and 0.15 wt% hydrolyzed polyacrylamide. The nonionic surfactant decreased the optimum salinity to 1.1 wt% NaCl compared to the 1.7 wt% NaCl of the reference case with heavy alcohol present instead of the nonionic surfactant. The coreflooding test confirmed the field applicability of the nonionic surfactant by recovering more oil, with the proposed scheme producing up to 74% of residual oil after extensive waterflooding compared to 51% of cumulative oil recovery with the reference case. The nonionic surfactant led to a Winsor type III microemulsion with a 0.85 pore volume while the reference case had a 0.50 pore volume. The nonionic surfactant made ASP flooding more hydrophobic, maintained a separate phase of the surfactant between the oil and aqueous phases to achieve ultra-low interfacial tension, and recovered the oil effectively.
This paper experimentally analyzes the chemical additives, i.e., methanol and ethanol, as alcohol solvents, and acetone as a ketone solvent, and the temperature influencing the minimum miscibility pressure (MMP) that is essential to design miscible CO 2 flooding at an oil field, the South Sumatra basin, Indonesia. The experiments were designed to measure CO 2 -oil interfacial tension with the vanishing interfacial tension (VIT) method in the ranges up to 3000 psi (208.6 bar) and 300 degrees Celsius. The experiment results show that lower temperatures, larger solvent volumes, and the acetone were effective in reducing MMP. The acetone, an aprotic ketone solvent, reduced MMP more than the methanol and the ethanol in the CO 2 -oil system. The high temperature was negative to obtain the high CO 2 solubility into the oil as well as the lower MMP. The experimental results confirm that the aprotic ketone solvent could be effective in decreasing the MMP for the design of miscible CO 2 flooding at the shallow mature oilfields with a low reservoir temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.