Christodoulou and Rovelli have shown that the interior volume of a Schwarzschild black hole grows linearly with time. The entropy of a scalar field in this interior volume of a Schwarzschild black hole has been calculated and shown to increase linearly with the advanced time too. In this paper, considering Hawking radiation from a d-dimensional charged black hole, we investigate the proportional relation between the entropy of the scalar field in the interior volume and the Bekenstein–Hawking entropy using the method of our previous work. We also derive this proportionality relation using Hamiltonian analysis and find a consistent result. We then investigate the proportionality coefficient with respect to d and find that it gradually decreases as the dimension of space–time increases.
Based on the 4-dimensional black hole solution of f(R) theory coupled to a nonlinear Maxwell field, we calculate the interior volume of a charged f(R) black hole using the method proposed by Christodoulou and Rovelli. Considering massless scalar field in the interior volume and Hawking radiation carrying only energy, we calculate the entropy of the scalar field inside a charged f(R) black hole and investigate the evolution of the entropy under Hawking radiation. In the meantime, the evolution of the Bekenstein-Hawking entropy under Hawking radiation has also been calculated. Based on these results, the proportional relation is obtained between the evolution of the scalar field entropy and the evolution of Bekenstein-Hawking entropy under Hawking radiation. According to the result, we investigate and discuss how the modified coefficient b in f(R) gravity theory affects the evolution relation between the two types of entropy. It is shown that the radiation rate for Hawking radiation of a charged f(R) black hole can increase with the modified coefficient b.
While edible figs are grown agronomically for delicious fruit, many Ficus species have been commercialized for decorative, ornamental purposes. These horticultural Ficus varieties are used for interiorscape houseplant décor and for outdoor landscape design. This article provides guidelines for the identification and treatment of diseases that may be encountered during the commercial production of ornamental Ficus. This 7-page fact sheet was written by D. J. Norman and Shad Ali, and published by the UF Department of Plant Pathology, August 2013.
http://edis.ifas.ufl.edu/pp308
This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.