Cell phones are commonly used in healthcare settings for rapid communication within hospitals. Concerns have been increased about the use of these devices in hospitals, as they can be used everywhere, even in toilets. Therefore, they can be vehicles for transmitting pathogens to patients. This study aimed to examine the presence of pathogenic bacteria on the surfaces of cell phones that are used frequently by preclinical medical students. This cross-sectional study identified both pathogenic and nonpathogenic bacteria on cell phones of 105 medical students at King Abdulaziz University, Jeddah, Saudi Arabia, using standard microbiological methods. Out of 105 cell phones screened, 101 (96.2%) were contaminated with bacteria. Coagulase-negative staphylococci were the most abundant isolates (68%). Seventeen (16.2%) cell phones were found to harbor Staphylococcus aureus. Gram-positive bacilli were isolated from 20 (19%) samples. Viridans streptococci and Pantoea species were also isolated but at lower levels. Our findings indicate that cell phones can act as reservoirs of both pathogenic and nonpathogenic organisms. Therefore, full guidelines about restricting the use of cell phones in clinical environments, hand hygiene, and frequent decontamination of mobile devices are recommended at an early stage in medical schools, to limit the risk of cross-contamination and healthcare-associated infections caused by cell phones.
Objectives:To identify Methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage status among medical students during their clinical rotations.Methods:This cross-sectional study detected the prevalence of MRSA among medical students at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, using molecular approaches. Nasal swabs were collected from 150 internship and sixth-year medical students between September 2014 and January 2015, and compared with the control group of 32 third-year medical students who were not exposed to clinical work. Polymerase chain reaction (PCR) screening was performed to identify Staphylococcus aureus (S. aureus) nuc gene, and an additional PCR was performed on S. aureus positive samples to detect the presence of mecA gene.Results:Out of 150 students screened, 38 were nasal carriers of S. aureus. The prevalence of methicillin-sensitive S. aureus (MSSA) carriers was 18.7% (n=28), whereas 10 students (6.7%) were mecA-positive, representing MRSA carriers. Interns carry MRSA more than 6th year students and students who were not exposed to clinical work (p<0.05), while MSSA is found more in students who were not exposed to clinical work (p<0.01).Conclusion:We found MRSA carriers among medical students at KAU, which showed a possible contribution of this group to transmit infection to hospitalized patients. Medical students must receive sufficient knowledge regarding control measures to avoid spread of this infection in hospitals.
Certain anticancer agents selectively target the nucleus of cancer cells. One such drug is 2-methoxyestradiol (2ME), which is used for treating lung cancer. To improve the therapeutic effectiveness of these agents, many new methods have been devised. 2ME was entrapped into the core of hydrophobic invasomes (INVA) covered with Phospholipon 90G and apamin (APA). The Box–Behnken statistical design was implemented to enhance the composition. Using Design-Expert software (Stat-Ease Inc., Minneapolis, MN), the INVA component quantities were optimized to obtain spherical particles with the smallest size, that is, a diameter of 167.8 nm. 2ME-INVA-APA significantly inhibited A549 cells and exhibited IC 50 of 1.15 ± 0.04 µg/mL, which is lower than raw 2ME (IC 50 5.6 ± 0.2 µg/mL). Post 2ME-INVA-APA administration, a significant rise in cell death and necrosis was seen among the A549 cells compared to those treated with plain formula or 2ME alone. This effect was indicated by increased Bax expression and reduced Bcl-2 expression, as well as mitochondrial membrane potential loss. Moreover, the cell cycle analysis showed that 2ME-INVA-APA arrests the G2-M phase of the A549 cells. Additionally, it was observed that the micellar formulation of the drug increased the cell count in pre-G1, thereby exhibiting phenomenal apoptotic potential. Furthermore, it up-regulates caspase-9 and p53 and downregulates TNF-α and NF-κβ. Collectively, these findings showed that our optimized 2ME-INVA-APA could easily seep through the cell membrane and induce apoptosis in relatively low doses.
Introduction Carbapenem-resistant Enterobacteriaceae (CRE) infections resist nearly most available antimicrobials, resulting in poor clinical outcomes. Saudi Arabia has a relatively high CRE prevalence. This study aims to evaluate the sensitivity of Rapidec Carba NP test and GeneXpert Carba-R assay compared with conventional manners for detection of carbapenemase-producing Enterobacteriaceae . Methods This is a cross-sectional study including a total of 90 CRE isolates examined at two tertiary hospitals in KSA from October 2020 to December 2021. Gram-negative Enterobacteriaceae were identified by using Vitek 2 system and were furtherly tested for imipenem and meropenem susceptibility by E- test strips, followed by Rapidec Carba NP test and the Xpert™Carba-R assay. Results Carbapenem-resistant K. pneumoniae (78.9%) and carbapenem-resistant E. coli (14.4%) were the two most common isolates species. Colistin (98.9%) and tigecycline (88.9%) were the most effective antibiotics against CRE isolates, followed by amikacin (52.2%), gentamicin (33.3%), cotrimoxazole (15.6%), and ciprofloxacin (8.9%). blaOXA-48 was the predominant carbapenemase gene (44.4%), followed by blaNDM (32.2%). blaKPC gene was not detected. The Rapidec Carba NP and the Xpert™Carba-R demonstrated an overall sensitivity of 69.3% and 88%, respectively, in comparison to gold standard detection of meropenem and imipenem resistance by Vitek 2 system and E- test strips. Discussion RAPIDEC ® CARBA NP may be a beneficial screening test for detecting CRE, but for confirmation of the results, Xpert Carba-R assay is more sensitive, significantly lowering the turnaround time compared to reference traditional methods. The information on carbapenemase genes may be used for epidemiologic purposes and outbreak management.
The outer membrane (OM) of Gram-negative pathogenic bacteria is a key structure in host–pathogen interactions that contains a plethora of proteins, performing a range of functions including adhesion, nutrient uptake, export of effectors and interaction with innate and adaptive components of the immune system. In addition, the OM can exclude drugs and thus contribute to antimicrobial resistance. The OM of the food-borne pathogen Campylobacter jejuni contains porins, adhesins and other virulence factors that must be specifically localized to this membrane, but the protein sorting mechanisms involved are only partially understood. In particular, chaperones are required to ferry OM proteins across the periplasm after they emerge from the Sec translocation system. The SurA-related chaperone PEB4 (Cj0596) is the only protein with a proven role in OM biogenesis and integrity in C. jejuni. In this work, we have constructed a set of isogenic deletion mutants in genes encoding both known and predicted chaperones (cj0596, cj0694, cj1069, cj1228c, and cj1289) using NCTC 11168H as the parental strain. These mutants were characterized using a range of assays to determine effects on growth, agglutination, biofilm formation, membrane permeability and hydrophobicity. We focused on Cj1289 and Cj0694, which our previous work suggested possessed both chaperone and peptidyl-proyl cis/trans isomerase (PPIase) domains. Mutants in either cj1289 or cj0694 showed growth defects, increased motility, agglutination and biofilm formation and severe OM permeability defects as measured by a lysozyme accessibility assay, that were comparable to those exhibited by the isogenic peb4 mutant. 2D-gel comparisons showed a general decrease in OM proteins in these mutants. We heterologously overproduced and purified Cj0694 and obtained evidence that this protein was an active PPIase, as judged by its acceleration of the refolding rate of reduced and alkylated ribonuclease T1 and that it also possessed holdase-type chaperone activity. Cj0694 is most similar to the PpiD class of chaperones but is unusual in possessing PPIase activity. Taken together, our data show that in addition to PEB4, Cj1289 (SalC; SurA-like chaperone) and Cj0694 (PpiD) are also key proteins involved in OM biogenesis and integrity in C. jejuni.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.