COVID-19 epidemic in Malaysia started as a small wave of 22 cases in January 2020 through imported cases. It was followed by a bigger wave mainly from local transmissions resulting in 651 cases. The following wave saw unexpectedly three digit number of daily cases following a mass gathering urged the government to choose a more stringent measure. A limited lock-down approach called Movement Control Order (MCO) was immediately initiated to the whole country as a way to suppress the epidemic trajectory. The lock-down causes a major socio-economic disruption thus the ability to forecast the infection dynamic is urgently required to assist the government on timely decisions. Limited testing capacity and limited epidemiological data complicate the understanding of the future infection dynamic of the COVID-19 epidemic.
Map-based navigation is the common navigation method used among the mobile robotic application. The localization plays an important role in the navigation where it estimates the robot position in an environment. Monte Carlo Localization (MCL) is found as the widely used estimation algorithm due to it non-linear characteristic. There are classifications of MCL such as Adaptive MCL (AMCL), Normal Distribution Transform MCL (NDT-MCL) which can perform better than the MCL. However, AMCL is adaptive to particles but the position estimation accuracy is not optimized. NDT-MCL has good position estimation but it requires higher number of particles which results in higher computational effort. The objective of the research is to design and develop a localization algorithm which can achieve better performance in term of position estimation and computational effort. The new MCL algorithm which is named as Adaptive Normal Distribution Transform Monte Carlo Localization (ANDT-MCL) is then designed and developed. It integrates Kullback–Leibler divergence, Normal Distribution Transform and Systematic Resampling into the algorithm. Three experiments are conducted to evaluate the performance of proposed ANDT-MCL in simulated environment. These experiments include evaluating the performance of ANDT-MCL with different path shape, distance and velocity. In the end of the research work, the proposed ANDT-MCL is successfully developed. It is adaptive to the number of particles used, higher position estimation and lower computational effort than existing algorithms. The algorithm can produce better position estimation with less computational effort in any kind paths and is consistent in long journey as well as can outperform in high speed navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.