Purpose:The aim of this study was to produce a low-cost anatomical model of adult male including lower limbs to evaluate the three-dimensional dose distribution for dosimetry measurements, especially in total body irradiation (TBI) and total skin electron therapy (TSET).Materials and methods:Computed tomography (CT) scan images of the atomic energy organisation RANDO phantom and lower limb CT scan images of 20 healthy persons were averaged. Selections of different body tissues substitute materials and phantom validation were performed according to previous studies worked on construction of radiation therapy phantoms.Results:The dosimetry aspect of the selected substitute materials from all considered methods showed that they were in good agreement with real human tissue, especially bone, with a percentage error of 0·5%. The results show that the electron densities obtained from the linear attenuation coefficient (reDLAC) for the tissue equivalent material used in the phantom is a better option for validation.Conclusions:This validated phantom has numerous advantages over the origin type of RANDO phantom. Therefore, using it in TBI and TSET dosimetry is recommendable.
Background:The Total Skin Electron Therapy (TSET) targets the whole of skin using 6 to 10 MeV electrons in large field size and large Source to Surface Distance (SSD). Treatment in sleeping position leads to a better distribution of dose and patient comfort.Objective: This study aims to investigate the uniformity of absorbed dose in the sleeping Stanford technique on the Rando phantom using dosimetry.
Material and Methods:It is an experimental study which was performed using 6 MeV electron irradiation produced by Varian accelerator in the AP and PA positions with gantry angles of 318/3, 0 and 41/5 degrees, and RAO, LAO, RPO and LPO with 291/4 gantry angle and 45 degrees of collimator angle in the sleeping position.
Results:The results show that the dose uniformity achieved in this technique is in the range of (100 ± 25%) and, the dose accuracy was 6%.
Conclusion: Total Skin Electron Therapy (TSET) technique in sleeping positionis very suitable for elderly and disabled patients, and meets the required dose uniformity. Furthermore, the use of a flattening filter is recommended for the more dose distribution uniformity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.