Optimization of Graphene concentration in optoelectronic properties has been studied which leads to progressive stability based on Graphene-CH 3 NH 3 PbI 3 employing nanoparticles perovskites solar cells in this work. CH 3 NH 3 PbI 3 wafer-based hetero-junction solar cells were developed under atmospheric conditions using Graphite as a hole transport layer (HTL) and TiO 2 as an electron transport layer (ETL). In particular a considerable enhancement in power conversion efficiency (PCE < 0.01%) has been realized using optimum Graphene concentration (0.05 g/ml). The charge injection rate is radically faster for the particular Graphene composition than the pristine perovskites, which exposes ephemeral absorption in near to UV range. Graphene incorporation increased the average crystallite size and reduced the band gap 1.32 eV in the visible range. The expensive metals such as Ag and Au have been replaced by simple ITO, which tremendously reduces the fabrication cost of the PSCs. The fabricated devices were exposed to high conservation stability without cell encapsulation ambient condition for 150 days to show excellent stability.
In this work, we demonstrate the synthesis and characterization of Cu-based thin film perovskites and their prospective application in photovoltaic cells and light-harvesting devices, which is lead(Pb) free and environmental friendly. We studied valuable part of graphene for stability issue in CH 3 NH 3 CuCl 3 (MACuCl 3 ) Perovskites solar cell and improved band gap 2.61 eV to 2.56 eV as well. Copper ions represented responsible of this materials for the bright green photoluminescence. For assimilating MACuCl 3 and G-MACuCl 3 based Perovskites, solar cells architectures and photovoltaic performance are argued among them. The main limitations for the solar cell efficiency were found the arrangement of insubstantial mass and high absorption coefficient of the electrons as well. As per as our knowledge, this work is demonstrated of the prospective of thin film MACuCl 3 and G-MACuCl 3 perovskite as light absorber and puts down the establishment for additional development of perovskite solar cell as alternative of lead-free materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.