It is well-known that cardiovascular disease is one of the major causes of death worldwide nowadays. Electrocardiogram (ECG) sensor is one of the tools commonly used by cardiologists to diagnose and detect signs of heart disease with their patients. Since fast, prompt and accurate interpretation and decision is important in saving the life of patients from sudden heart attack or cardiac arrest, many innovations have been made to ECG sensors. However, the use of traditional ECG sensors is still prevalent in the clinical settings of many medical institutions. This article provides a comprehensive survey on ECG sensors from hardware, software and data format interoperability perspectives. The hardware perspective outlines a general hardware architecture of an ECG sensor along with the description of its hardware components. The software perspective describes various techniques (denoising, machine learning, deep learning, and privacy preservation) and other computer paradigms used in the software development and deployment for ECG sensors. Finally, the format interoperability perspective offers a detailed taxonomy of current ECG formats and the relationship among these formats. The intention is to help researchers towards the development of modern ECG sensors that are suitable and approved for adoption in real clinical settings.
Cardiac arrhythmia is a leading cause of cardiovascular disease, with a high fatality rate worldwide. The timely diagnosis of cardiac arrhythmias, determined by irregular and fast heart rate, may help lower the risk of strokes. Electrocardiogram signals have been widely used to identify arrhythmias due to their non-invasive approach. However, the manual process is error-prone and time-consuming. A better alternative is to utilize deep learning models for early automatic identification of cardiac arrhythmia, thereby enhancing diagnosis and treatment. In this article, a novel deep learning model, combining convolutional neural network and bi-directional long short-term memory, is proposed for arrhythmia classification. Specifically, the classification comprises five different classes: non-ectopic (N), supraventricular ectopic (S), ventricular ectopic (V), fusion (F), and unknown (Q) beats. The proposed model is trained, validated, and tested using MIT-BIH and St-Petersburg data sets separately. Also, the performance was measured in terms of precision, accuracy, recall, specificity, and f1-score. The results show that the proposed model achieves training, validation, and testing accuracies of 100%, 98%, and 98%, respectively with the MIT-BIH data set. Lower accuracies were shown for the St-Petersburg data set. The performance of the proposed model based on the MIT-BIH data set is also compared with the performance of existing models based on the MIT-BIH data set.
Deep Learning (DL) has gained enormous popularity recently; however, it is an opaque technique that is regarded as a black box. To ensure the validity of the model’s prediction, it is necessary to explain its authenticity. A well-known locally interpretable model-agnostic explanation method (LIME) uses surrogate techniques to simulate reasonable precision and provide explanations for a given ML model. However, LIME explanations are limited to tabular, textual, and image data. They cannot be provided for signal data features that are temporally interdependent. Moreover, LIME suffers from critical problems such as instability and local fidelity that prevent its implementation in real-world environments. In this work, we propose Bootstrap-LIME (B-LIME), an improvement of LIME, to generate meaningful explanations for ECG signal data. B-LIME implies a combination of heartbeat segmentation and bootstrapping techniques to improve the model’s explainability considering the temporal dependencies between features. Furthermore, we investigate the main cause of instability and lack of local fidelity in LIME. We then propose modifications to the functionality of LIME, including the data generation technique, the explanation method, and the representation technique, to generate stable and locally faithful explanations. Finally, the performance of B-LIME in a hybrid deep-learning model for arrhythmia classification was investigated and validated in comparison with LIME. The results show that the proposed B-LIME provides more meaningful and credible explanations than LIME for cardiac arrhythmia signal data, considering the temporal dependencies between features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.