Viruses can be classified into archaeoviruses, bacterioviruses, and eukaryoviruses according to the taxonomy of the infected host. The host-constrained perception of viruses implies preference of genetic exchange between viruses and cellular organisms of their host superkingdoms and viral origins from host cells either via escape or reduction. However, viruses frequently establish non-lytic interactions with organisms and endogenize into the genomes of bacterial endosymbionts that reside in eukaryotic cells. Such interactions create opportunities for genetic exchange between viruses and organisms of non-host superkingdoms. Here, we take an atypical approach to revisit virus-cell interactions by first identifying protein fold structures in the proteomes of archaeoviruses, bacterioviruses, and eukaryoviruses and second by tracing their spread in the proteomes of superkingdoms Archaea, Bacteria, and Eukarya. The exercise quantified protein structural homologies between viruses and organisms of their host and non-host superkingdoms and revealed likely candidates for virus-to-cell and cell-to-virus gene transfers. Unexpected lifestyle-driven genetic affiliations between bacterioviruses and Eukarya and eukaryoviruses and Bacteria were also predicted in addition to a large cohort of protein folds that were universally shared by viral and cellular proteomes and virus-specific protein folds not detected in cellular proteomes. These protein folds provide unique insights into viral origins and evolution that are generally difficult to recover with traditional sequence alignment-dependent evolutionary analyses owing to the fast mutation rates of viral gene sequences.
The emergence of COVID-19 infection led to the indiscriminate use of antimicrobials without knowing their efficacy in treating the disease. The gratuitous use of antibiotics for COVID-19 treatment raises concerns about the emergence of antimicrobial resistance (AMR). In this systematic review, we performed a thorough systematic search using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of scientific databases (Scopus, Web of Science, and PubMed) to identify studies where antibiotics were prescribed to treat COVID-19 (December 2019 to December 2021). Of 970 identified studies, 130 were included in our analyses. Almost 78% of COVID-19 patients have been prescribed an antibiotic. Cephalosporins were the most prescribed (30.1% of patients) antibiotics, followed by azithromycin (26% of patients). Antibiotics were prescribed for COVID-19 patients regardless of reported severity; the overall rate of antibiotic use was similar when comparing patients with a severe or critical illness (77.4%) and patients with mild or moderate illness (76.8%). Secondary infections were mentioned in only 11 studies. We conclude that concerns related to COVID-19 and the lack of treatment strategy led to the overuse of antibiotics without proper clinical rationale. Based on our findings, we propose that antimicrobial stewardship should be retained as a priority while treating viral pandemics.
Background: Non-synchronized pods shattering in the Brassicaceae family bring upon huge yield losses around the world. The shattering process was validated to be controlled by eight different genes in the model plant Arabidopsis thaliana, including SHATTERPROOF1, SHATTERPROOF2, FRUITFULL, INDEHISCENT, ALCATRAZ, NAC, REPLUMLESS and POLYGlACTOURANAZE. To obtain gene family & examine their expression patterns into fresh & mature silique, then completed genome wide identification, characterization, and expression analysis of shattering genes in B. napus and B. juncea.Results: Complete genome analysis of B. napus and B. juncea revealed 32 shattering genes, which were identified and categorize based on protein motif structure, exon-intron organization and phylogeny. The phylogenetic study revealed that these shattering genes contain little duplications that were determined with a distinct chromosome number. Motifs of 32 shattering proteins were also observed where motifs 6 were found to be more conserved. A single motif was observed for other genes like BrnS7, BrnS8, BrjS23 and BrjS26. Comparative genomics for synteny analysis was performed that validated a conserved pattern of blocks among these cultivars. RT-PCR based expressions profile showed higher expression of shattering genes in B. juncea as compared to B. napus. FUL gene was expressed more in the mature silique. ALC gene was not expressed in the fresh silique of B. napus but highly expressed in the mature silique. Conclusion: This study authenticates that shattering genes exist in the local cultivars of Brassica. ALC exhibited strong expression in both the mature and fresh silique of B. juncea. Our results showed that shattering genes expression occurred more in B. juncea as compared to B. napus. It also contributes to the screening of more candidate gene for further investigation and characterization.
Background Non-synchronized pods shattering in the Brassicaceae family bring upon huge yield losses around the world. The shattering process was validated to be controlled by eight genes in Arabidopsis, including SHP1, SHP2, FUL, IND, ALC, NAC, RPL, and PG. We performed genome-wide identification, characterization, and expression analysis of shattering genes in B.napus and B. juncea to gain understanding into this gene family and to explain their expression patterns in fresh and mature siliques. Results A comprehensive genome investigation of B.napus and B.juncea revealed 32 shattering genes, which were identified and categorized using protein motif structure, exon-intron organization, and phylogeny. The phylogenetic study revealed that these shattering genes contain little duplications, determined with a distinct chromosome number. Motifs of 32 shattering proteins were observed where motifs1 and 2 were found to be more conserved. A single motif was observed for other genes like Br-nS7, Br-nS9, Br-nS10, Br-jS21, Br-jS23, Br-jS24, Br-jS25, and Br-jS26. Synteny analysis was performed that validated a conserved pattern of blocks among these cultivars. RT-PCR based expressions profiles showed higher expression of shattering genes in B. juncea as compared to B.napus. SHP1, SHP2, and FUL gene were expressed more in mature silique. ALC gene was upregulated in fresh silique of B. napus but downregulation of ALC were observed in fresh silique of B. juncea. Conclusion This study authenticates the presence of shattering genes in the local cultivars of Brassica. It has been validated that the expression of shattering genes were more in B. juncea as compared to B.napus. The outcomes of this study contribute to the screening of more candidate genes for further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.