BackgroundFewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells’ chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells.MethodsThe effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software.ResultsMoringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells.ConclusionMoringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.
Objective: The COVID-19 pandemic has had a major impact on teachers professional and personal lives. Our primary aim was to assess the effect of a blended Inquiry-Based Stress Reduction (IBSR), an emerging mindfulness and cognitive reframing intervention on teacher’s well-being. Our secondary aims were to assess the effect of IBSR on resilience, burnout, mindfulness, and stress among teachers during the COVID-19 pandemic. Methods: The study was a prospective controlled trial with an intervention group (N = 35) and a comparison control group (N = 32). The intervention took place in the Jerusalem District throughout the school year from November 2019 to May 2020. The sessions were conducted in blended learning that included traditional learning (face-to-face) and online learning. Data was analyzed on an intention-to-treat basis. Results: IBSR blended intervention enhanced the resilience and improved the subjective and psychological well-being of teachers in spite of the breakout of the COVID-19 pandemic and the first lockdown in Israel. Simultaneously the control group suffered from enhanced burnout levels and a decline in psychological and subjective well-being. Conclusions: Implementation of IBSR blended intervention during the school year may benefit teachers’ well-being and ability to flourish, even during stressful events such as the COVID-19 pandemic.
Pneumonia is the leading infectious cause of death in children worldwide. Each year, pneumonia kills an estimated 935,000 children under five years of age, with most of these deaths occurring in developing countries. The current approach for pneumonia diagnosis in low-resource settings—using the World Health Organization Integrated Management of Childhood Illness (IMCI) paper-based protocols and relying on a health care provider’s ability to manually count respiratory rate—has proven inadequate. Furthermore, hypoxemia—a diagnostic indicator of the presence and severity of pneumonia often associated with an increased risk of death—is not assessed because pulse oximetry is frequently not available in low-resource settings. In an effort to address childhood pneumonia mortality and improve frontline health care providers’ ability to diagnose, classify, and manage pneumonia and other childhood illnesses, PATH collaborated with the University of Washington to develop “mPneumonia,” an innovative mobile health application using an Android tablet. mPneumonia integrates a digital version of the IMCI algorithm with a software-based breath counter and a pediatric pulse oximeter. We conducted a design-stage usability field test of mPneumonia in Ghana, with the goal of creating a user-friendly diagnostic and management tool for childhood pneumonia and other childhood illnesses that would improve diagnostic accuracy and facilitate adherence by health care providers to established guidelines in low-resource settings. The results of the field test provided valuable information for understanding the usability and acceptability of mPneumonia among health care providers, and identifying approaches to iterate and improve. This critical feedback helped ascertain the common failure modes related to the user interface design, navigation, and accessibility of mPneumonia and the modifications required to improve user experience and create a tool aimed at decreasing mortality from pneumonia and other childhood illnesses in low-resource settings.
Purpose: Multiple studies have indicated that cyclooxygenase-2 (COX-2) inhibitors may prevent colon cancer, which is one of the leading causes of cancer death in the western world. Recent studies, however, showed that their long-term use may be limited due to cardiovascular toxicity. This study aims to investigate whether curcumin potentiates the growth inhibitory effect of celecoxib, a specific COX-2 inhibitor, in human colon cancer cells. Experimental Design: HT-29 and IEC-18-K-ras (expressing high levels of COX-2), Caco-2 (expressing low level of COX-2), and SW-480 (no expression of COX-2) cell lines were exposed to different concentrations of celecoxib (0-50 Amol/L), curcumin (0-20 Amol/L), and their combination. COX-2 activity was assessed by measuring prostaglandin E 2 production by enzyme-linked immunoassay. COX-2 mRNA levels were assessed by reverse transcription-PCR. Results: Exposure to curcumin (10-15 Amol/L) and physiologic doses of celecoxib (5 Amol/L) resulted in a synergistic inhibitory effect on cell growth. Growth inhibition was associated with inhibition of proliferation and induction of apoptosis. Curcumin augmented celecoxib inhibition of prostaglandin E 2 synthesis. The drugs synergistically down-regulated COX-2 mRNA expression. Western blot analysis showed that the level of COX-1was not altered by treatment with celecoxib, curcumin, or their combination. Conclusions: Curcumin potentiates the growth inhibitory effect of celecoxib by shifting the dose-response curve to the left. The synergistic growth inhibitory effect was mediated through a mechanism that probably involves inhibition of the COX-2 pathway and may involve other nonĈ OX-2 pathways. This synergistic effect is clinically important because it can be achieved in the serum of patients receiving standard anti-inflammatory or antineoplastic dosages of celecoxib.
The increased cytotoxic effect of the combination on cell survival and on the induction of apoptosis in COX-2 expressing pancreatic cancer cells is probably associated with downregulation of COX-2 and p-ERK1/2 levels. This finding may contribute to the development of an effective treatment of pancreatic adenocarcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.