West Nile virus (WNV) is a mosquito-borne disease found most commonly in Africa, West Asia, and the Middle East, where up to 40% of the human population possesses antibodies. It is an emerging disease in the United States. Humans infected with WNV develop a febrile illness that can progress to meningitis or encephalitis. In mice, WNV causes central nervous system infection, paralysis, encephalitis, and death. Currently, no specific therapy or vaccine has been approved for human use. We examined the prophylactic and therapeutic efficacy of pooled human plasma (PP) and intravenous immunoglobulin (IVIG) for treatment of WNV-infected mice. Full protection was achieved when the infected mice were treated with pooled plasma or IVIG obtained from healthy Israeli blood donors that contained WNV-specific antibodies. Similar treatments using PP or IVIG obtained from US blood donors had no protective effect. Recovery of the lethally infected mice was dependent on the dose and time of IVIG administration. These results indicate that antibodies play a major role in protection and recovery from WNV infection and that IVIG can be used as first-line therapy.
Measles virus remains a substantial cause of morbidity and mortality, producing acute infection with a potential for development of viral persistence. To study the events underlying acute and persistent measles virus infection, we performed a global transcriptional analysis on murine neuroblastoma cells that were acutely or persistently infected with measles virus. In general, we found that acute infection induced significantly more gene expression changes than did persistent infection. A functional enrichment analysis to identify which host pathways were perturbed during each of these infections identified several pathways related to cholesterol biosynthesis, including cholesterol metabolic processes, hydroxymethylglutaryl-coenzyme A (CoA) reductase activity, and acetyl-CoA C-acetyltransferase activity. We also found that measles virus colocalized to lipid rafts in both acute and persistent infection models and that the majority of genes associated with cholesterol synthesis were downregulated in persistent infection relative to acute infection, suggesting a possible link with the defective viral budding in persistent infection. Further, we found that pharmacological inhibition of cholesterol synthesis resulted in the inhibition of viral budding during acute infection. In summary, persistent measles viral infection was associated with decreased cholesterol synthesis, a lower abundance of cholesterol and lipid rafts in the cell membrane, and inhibition of giant-cell formation and release of viral progeny.Measles virus (MV) remains a significant health burden, claiming 450,000 lives worldwide every year, and most of the deaths occur in children (35). MV is the etiological agent of both acute measles infection and subacute sclerosing panencephalitis (SSPE), a rare and devastating persistent infection of the central nervous system (7,8,12). MV is typically highly cytolytic, resulting in an acute infection that confers lifelong immunity. The reasons and underlying mechanisms of transformation into a persistent infection in some individuals remain unknown, and the pathological implications of such an infection are controversial.Although no mechanism for the transformation from acute to persistent infection has been established, partial explanations have been proposed. Defective measles matrix (M) protein has been recovered in some SSPE cases and was suggested as a possible underlying mechanism for persistence (11,15,20). Our previous research also demonstrated that there is significantly less viral budding in persistent versus acute MV infection of murine neuroblastoma cell lines and that this is not due to decreased viral protein synthesis, which is unimpaired (22,25). Viral budding in MV infection involves the incorporation of envelope proteins into the host cell membrane (5). This has been recently shown to occur in lipid rafts-cholesterol-rich domains in the cellular membrane (17,19,21,33).In this study, we used microarray analysis to compare gene expression during acute and persistent infection with MV and to id...
Background: Little is known at the molecular level concerning the differences and/or similarities between alcohol and hepatitis C virus induced liver disease. Global transcriptional profiling using oligonucleotide microarrays was therefore performed on liver biopsies from patients with cirrhosis caused by either chronic alcohol consumption or chronic hepatitis C virus (HCV).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.