Influenza's Cryptic Constraint Because of the well-known pandemic potential of influenza viruses, it is important to understand the range of molecular interactions between the virus and its host. Despite years of intensive research on the virus, Jagger et al. (p. 199 , published online 28 June; see the Perspective by Yewdell and Ince ) have found that the influenza A virus has been hiding a gene in its small negative-sense RNA genome. An overlapping open reading frame was found contained in the PA viral RNA polymerase gene, which is accessed by ribosomal frameshifting to produce a fusion protein containing the N-terminal messenger RNA (mRNA) endonuclease domain of PA and an alternative C-terminal X domain. The resulting polypeptide, PA-X, selectively degrades host mRNAs and, in a mouse model of infection, modulated cellular immune responses, thus limiting viral pathogenesis.
Chronic hepatitis B virus (HBV) infection can result in severe liver disease with eventual progression to cirrhosis and hepatocellular carcinoma. 1 Roughly 5% of the world' s population (over 350 million persons) are chronically infected with HBV. 2 Although interferon alfa remains the only licensed drug for the treatment of chronic HBV infection, the overall response rate to this immunotherapy is less than 40%. 3 Therefore, other effective antiviral therapies for patients with HBV infection are needed.Lamivudine [(-)2Ј-deoxy-3Ј-thiacytidine, 3TC] is a member of a class of antiviral nucleoside analogs that inhibit hepadnavirus replication specifically by terminating viral DNA synthesis. 4 Lamivudine is currently being evaluated in Phase III clinical trials for the treatment of both patients chronically infected with HBV and patients with HBV reinfection of an allograft after orthotopic liver transplantation.In Phase II trials, 5-7 lamivudine treatment was shown to rapidly reduce serum HBV DNA to levels below the detection limit of standard commercial assays, and to be well tolerated with no major toxicities. However, as with other antivirals, 7-11 resistance to lamivudine therapy can emerge in some patients. Recent investigations have reported the development of lamivudine-resistant HBV in six orthotopic liver transplantation patients on therapy. [12][13][14] In each patient, sequence analysis of serum HBV DNA revealed the presence of specific mutations in the tyrosine, methionine, aspartate, aspartate (YMDD) amino acid motif of the viral polymerase. This YMDD motif is a conserved domain of all reverse transcriptases (RT) and is required for polymerization activity. However, various other amino acid changes in the polymerase were also described in these reports.To determine the significance of various mutations in the development of lamivudine-resistant HBV, a more comprehensive study was undertaken. In this study, DNA sequences were determined from HBV isolates from 20 patients experiencing breakthrough HBV reactivation while on lamivudine therapy. From this larger series of 20 clinical HBV isolates, the database of lamivudine-resistant HBV sequences was expanded to confirm viral DNA mutations associated with lamivudine resistance in vivo. To explore the biological significance of the key observed mutations, putative resis-
Breast cancer stem cells (CSCs) are thought to drive recurrence and metastasis. Their identity has been linked to the epithelial to mesenchymal transition (EMT) but remains highly controversial since—depending on the cell-line studied—either epithelial (E) or mesenchymal (M) markers, alone or together have been associated with stemness. Using distinct transcript expression signatures characterizing the three different E, M and hybrid E/M cell-types, our data support a novel model that links a mixed EM signature with stemness in 1) individual cells, 2) luminal and basal cell lines, 3) in vivo xenograft mouse models, and 4) in all breast cancer subtypes. In particular, we found that co-expression of E and M signatures was associated with poorest outcome in luminal and basal breast cancer patients as well as with enrichment for stem-like cells in both E and M breast cell-lines. This link between a mixed EM expression signature and stemness was explained by two findings: first, mixed cultures of E and M cells showed increased cooperation in mammosphere formation (indicative of stemness) compared to the more differentiated E and M cell-types. Second, single-cell qPCR analysis revealed that E and M genes could be co-expressed in the same cell. These hybrid E/M cells were generated by both E or M cells and had a combination of several stem-like traits since they displayed increased plasticity, self-renewal, mammosphere formation, and produced ALDH1+ progenies, while more differentiated M cells showed less plasticity and E cells showed less self-renewal. Thus, the hybrid E/M state reflecting stemness and its promotion by E-M cooperation offers a dual biological rationale for the robust association of the mixed EM signature with poor prognosis, independent of cellular origin. Together, our model explains previous paradoxical findings that breast CSCs appear to be M in luminal cell-lines but E in basal breast cancer cell-lines. Our results suggest that targeting E/M heterogeneity by eliminating hybrid E/M cells and cooperation between E and M cell-types could improve breast cancer patient survival independent of breast cancer-subtype.
Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis.
BackgroundHepatitis C virus (HCV) is a major cause of chronic liver disease by infecting over 170 million people worldwide. Recent studies have shown that microRNAs (miRNAs), a class of small non-coding regulatory RNAs, are involved in the regulation of HCV infection, but their functions have not been systematically studied. We propose an integrative strategy for identifying the miRNA-mRNA regulatory modules that are associated with HCV infection. This strategy combines paired expression profiles of miRNAs and mRNAs and computational target predictions. A miRNA-mRNA regulatory module consists of a set of miRNAs and their targets, in which the miRNAs are predicted to coordinately regulate the level of the target mRNA.ResultsWe simultaneously profiled the expression of cellular miRNAs and mRNAs across 30 HCV positive or negative human liver biopsy samples using microarray technology. We constructed a miRNA-mRNA regulatory network, and using a graph theoretical approach, identified 38 miRNA-mRNA regulatory modules in the network that were associated with HCV infection. We evaluated the direct miRNA regulation of the mRNA levels of targets in regulatory modules using previously published miRNA transfection data. We analyzed the functional roles of individual modules at the systems level by integrating a large-scale protein interaction network. We found that various biological processes, including some HCV infection related canonical pathways, were regulated at the miRNA level during HCV infection.ConclusionOur regulatory modules provide a framework for future experimental analyses. This report demonstrates the utility of our approach to obtain new insights into post-transcriptional gene regulation at the miRNA level in complex human diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.