Learning dynamics models is an essential component of model-based reinforcement learning. The learned model can be used for multi-step ahead predictions of the state variable, a process referred to as long-term prediction. Due to the recursive nature of the predictions, the accuracy has to be good enough to prevent significant error buildup. Accurate model learning in contact-rich manipulation is challenging due to the presence of varying dynamics regimes and discontinuities. Another challenge is the discontinuity in state evolution caused by impacting conditions. Building on the approach of representing contact dynamics by a system of switching models, we present a solution that also supports discontinuous state evolution. We evaluate our method on a contact-rich motion task, involving a 7-DOF industrial robot, using a trajectorycentric policy and show that it can effectively propagate state distributions through discontinuities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.