A size-selected genomic library comprising 280,000 colonies and representing approximately 18% of the chickpea genome, was screened for (GA)n, (GAA)n and (TAA)n microsatellite-containing clones, of which 389 were sequenced. The majority (approximately 75%) contained perfect repeats; interrupted, interrupted compound and compound repeats were only present in 6%-9% of cases. (TAA)-microsatellites contained the longest repeats, with unit numbers from 9 to 131. For 218 loci primers could be designed and used for the detection of microsatellite length polymorphisms in six chickpea breeding cultivars, as well as in C. reticulatum and C. echinospermum, wild, intercrossable relatives of chickpea. A total of 174 primer pairs gave interpretable banding patterns, 137 (79%) of which revealed at least two alleles on native polyacrylamide gels. A total of 120 sequence-tagged microsatellite site (STMS) markers were genetically mapped in 90 recombinant inbred lines from an inter-species cross between C. reticulatum and the chickpea cultivar ICC 4958. Markers could be arranged in 11 linkage groups (at a LOD score of 4) covering 613 cM. Clustering as well as random distribution of loci was observed. Segregation of 46 markers (39%) deviated significantly (P > or = 0.05) from the expected 1:1 ratio. The majority of these loci (73%) were located in three distinct regions of the genome. The present STMS marker map represents the most advanced co-dominant DNA marker map of the chickpea genome.
Field populations of Helicoverpa armigera Hübner from 15 localities across the Punjab, Pakistan, were assessed by the leaf dip method for resistance against formulated organophosphates, pyrethroids, and newer insecticide groups. Resistance levels in H. armigera have been incrementally increasing for organophosphate and pyrethroid insecticides after decades of use in Pakistan. Resistance ratios (RRs) documented for organophosphates were 24- to 116-fold for profenofos and 22- to 87-fold for chlorpyrifos. For pyrethroids, RRs were 3- to 69-fold for cypermethrin and 3- to 27-fold for deltamethrin. Resistance levels against newer chemistries were 2- to 24-fold for chlorfenapyr, 1- to 22-fold for spinosad, 1- to 20-fold for indoxacarb, 1- to 18-fold for abamectin, and 1- to 16-fold for emamectin benzoate. Resistant populations of H. armigera were mainly in the southern part of the Punjab, Pakistan. The most resistant populations were collected from Pakpattan, Multan, and Muzzafargarh. Of the nine insecticides tested, LC50 and LC90 values were lower for newer insecticide groups; resistance levels were moderate to very high against organophosphates, very low to high against pyrethroids, and very low to low against the newer-chemistry insecticides. These findings suggest that the newer-chemistry insecticides with different modes of action could be included in insecticide rotations or replace the older insecticides. Supplementing the use of synthetic insecticides with safer alternatives could help to successfully lower the farmer's reliance on insecticides and the incidence of resistance due to repeated use of insecticides against major insect pests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.