The use of remote sensing and GIS in water monitoring and management has been long recognized. This paper, however discusses the application of remote sensing and GIS specifically in monitoring water quality parameters in Al-Habbaniyah Lake, and the results were compared with in situ measurements. Variations of different parameters under investigation were as follows: temperature (15-33°C), pH (7-9), dissolved oxygen (6-11 mg/L), BOD5 (0.5-1.8), electrical conductivity (200-2280 μS/cm), TDS (147-1520 mg/L), TSS (68-3200), turbidity (5-51), nitrate (0.7-20 mg/l), phosphate (77-220 μg/l), and chlorophyll-a (0.9-130 μg/l). Remote sensing results revealed that the band 5 was most likely significantly correlated with turbidity in the winter. Band 2 and 3 was most likely significantly correlated with TDS in autumn and summer, while band 2 was most likely significantly correlated with TSS in autumn, band 2 is most likely significantly correlated with chlorophyll-a in autumn. The current study results demonstrated convergence between in situ and remote sensing readings. The models were used to explore the values of each of chlorophyll-a, TSS,TDS, and turbidity did not deviate much from the values actually measured in the three seasons. Nevertheless, they were very useful in anticipating all seasons of the study due to the insignificant deviation between the remotely sensed values and actual measured values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.