The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, have created high expectations for industrial, commercial, and social value. Second, the emerging and growing concern for creating ethical and trusted AI systems, including compliance with regulatory principles to ensure transparency and trust. These two threads have created a kind of “perfect storm” of research activity, all motivated to create and deliver any set of tools and techniques to address the XAI demand. As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science and which provides a basis for the development of a framework for transparent XAI. We identify four foundational components, including the requirements for (1) explicit explanation knowledge representation, (2) delivery of alternative explanations, (3) adjusting explanations based on knowledge of the explainee, and (4) exploiting the advantage of interactive explanation. With those four components in mind, we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a basic history of XAI ideas, and then synthesize those ideas into a simple framework that can guide the design of AI systems that require XAI.
The rapid growth of research in explainable artificial intelligence (XAI) follows on two substantial developments. First, the enormous application success of modern machine learning methods, especially deep and reinforcement learning, which have created high expectations for industrial, commercial and social value.Second, the emergence of concern for creating trusted AI systems, including the creation of regulatory principles to ensure transparency and trust of AI systems.These two threads have created a kind of "perfect storm" of research activity, all eager to create and deliver any set of tools and techniques to address the XAI demand.As some surveys of current XAI suggest, there is yet to appear a principled framework that respects the literature of explainability in the history of science, and which provides a basis for the development of a framework for transparent XAI. Here we intend to provide a strategic inventory of XAI requirements, demonstrate their connection to a history of XAI ideas, and synthesize those ideas into a simple framework to calibrate five successive levels of XAI.
In data dominated systems and applications, a concept of representing words in a numerical format has gained a lot of attention. There are a few approaches used to generate such a representation. An interesting issue that should be considered is the ability of such representationscalled embeddingsto imitate human-based semantic similarity between words. In this study, we perform a fuzzy-based analysis of vector representations of words, i.e., word embeddings. We use two popular fuzzy clustering algorithms on count-based word embeddings, known as GloVe, of different dimensionality. Words from WordSim-353, called the gold standard, are represented as vectors and clustered. The results indicate that fuzzy clustering algorithms are very sensitive to high-dimensional data, and parameter tuning can dramatically change their performance. We show that by adjusting the value of the fuzzifier parameter, fuzzy clustering can be successfully applied to vectors of highup to one hundreddimensions. Additionally, we illustrate that fuzzy clustering allows to provide interesting results regarding membership of words to different clusters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.