Alzheimer’s disease (AD) is a pervasive neurodegenerative disorder, the molecular and cellular complexity of which remains poorly understood. Here, we profiled and analysed 80,660 single-nucleus transcriptomes from prefrontal cortex of 48 individuals with varying degrees of AD pathology. We identified transcriptionally-distinct subpopulations across six major brain cell-types, including those associated with pathology and characterized by regulators of myelination, inflammation, and neuron survival. The strongest AD-associated changes appeared early in pathological progression and were highly cell-type-specific, whereas genes upregulated in late-stage were common across cell types and primarily involved in global stress response. Surprisingly, we found an overrepresentation of female cells in AD-associated subpopulations, and substantially different transcriptional responses between sexes in multiple cell types, including oligodendrocytes. Overall, myelination-related processes were recurrently perturbed in multiple cell types, suggesting a key role in AD pathophysiology. Our single-cell transcriptomic resource provides a first blueprint for interrogating the molecular underpinnings and cellular basis of AD.
Genome-wide association studies (GWAS) have identified genetic variants associated with age-related macular degeneration (AMD), one of the leading causes of blindness in the elderly. However, it has been challenging to identify the cell types associated with AMD given the genetic complexity of the disease. Here we perform massively parallel single-cell RNA sequencing (scRNA-seq) of human retinas using two independent platforms, and report the first single-cell transcriptomic atlas of the human retina. Using a multi-resolution network-based analysis, we identify all major retinal cell types, and their corresponding gene expression signatures. Heterogeneity is observed within macroglia, suggesting that human retinal glia are more diverse than previously thought. Finally, GWAS-based enrichment analysis identifies glia, vascular cells, and cone photoreceptors to be associated with the risk of AMD. These data provide a detailed analysis of the human retina, and show how scRNA-seq can provide insight into cell types involved in complex, inflammatory genetic diseases.
Background: Complex networks are studied across many fields of science and are particularly important to understand biological processes. Motifs in networks are small connected sub-graphs that occur significantly in higher frequencies than in random networks. They have recently gathered much attention as a useful concept to uncover structural design principles of complex networks. Existing algorithms for finding network motifs are extremely costly in CPU time and memory consumption and have practically restrictions on the size of motifs.
Schizophrenia is a devastating mental disorder with a high societal burden, complex pathophysiology, and diverse genetic and environmental risk factors. Its complexity, polygenicity, and small-effect-size and cell-type-specific contributors have hindered mechanistic elucidation and the search for new therapeutics. Here, we present the first single-cell dissection of schizophrenia, across 500,000+ cells from 48 postmortem human prefrontal cortex samples, including 24 schizophrenia cases and 24 controls. We annotate 20 cell types/states, providing a high-resolution atlas of schizophrenia-altered genes and pathways in each. We find neurons are the most affected cell type, with deep-layer cortico-cortical projection neurons and parvalbumin-expressing inhibitory neurons showing significant transcriptional changes converging on genetically-implicated regions. We discover a novel excitatory-neuron cell-state indicative of transcriptional resilience and enriched in schizophrenia subjects with less-perturbed transcriptional signatures. We identify key trans-acting factors as candidate drivers of observed transcriptional perturbations, including MEF2C, TCF4, SOX5, and SATB2, and map their binding patterns in postmortem human neurons. These factors regulate distinct gene sets underlying fetal neurodevelopment and adult synaptic function, bridging two leading models of schizophrenia pathogenesis. Our results provide the most detailed map to date for mechanistic understanding and therapeutic development in neuropsychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.