This study was carried out to investigate whether minute quantities of maternal drugs ingested over an extended period of time by a breast-feeding infant can alter the activity pattern of the infant's hepatic drug metabolizing enzyme (HDME). The HDME activity patterns of 12 breast-fed infants whose mothers were not on drug therapy were compared with those of 11 infants whose mothers had been taking 30 micrograms levo-norgesterel daily for 90 to 195 days (oral contraceptives group) and of 10 infants whose mothers had been taking ethambutol and isoniazid daily since pregnancy (tuberculosis group). As 6 beta hydroxycortisol in urine is considered to be a good and acceptable reflector of HDME activity, it was estimated from the infants' urine using enzyme-linked immunosorbent assay (ELISA) technique. A comparison of the patterns between 90 days of age and 195 days of age of the infants in the control group and the two study groups indicated an increase from 36.6 ng/mL to 58.4 ng/mL at 195 days in the control group. An initial decrease from 36.6 ng/mL to 26.2 ng/mL was noted with commencement of maternal levo-norgesterel therapy, followed by a slow and steady rise to 47.8 ng/mL at 195 days of age, with a shift in the peak from 120 to 135 days of infants age in the oral contraceptive group. A suppressed pattern with decreased levels of 6 beta hydroxycortisol ranging from 19.3 ng/mL to 26.5 ng/mL at 195 days was found in the tuberculosis group. The data were analyzed by two-way analysis of variance (ANOVA) coupled with Duncan's Multiple range test. Both treatment group showed significant differences from the control group at the 0.050 level. The HDME plays an important role in determining the final outcome of any drug in humans, as it controls the metabolism of drugs. Hence, alterations in its activity caused by the transfer of maternal drugs over a prolonged period of time could pose a serious problem to nurslings when they require drugs for their own benefit.
Objective:To create an in vitro cell culture model to predict the M/P (concentration of drug in milk/concentration in maternal plasma) ratios of therapeutic drugs viz. rifampicin, theophylline, paracetamol, and aspirin.Materials and Methods:An in vitro cell culture model using CIT3 cells (mouse mammary epithelial cells) was created by culturing the cells on transwells. The cells formed an integral monolayer, allowing only transcellular transport as it happens in vivo. Functionality of the cells was confirmed through scanning electron microscopy. Time wise transfer of the study drugs from plasma to milk was studied and compared with actual (in vivo) M/P ratios obtained at reported tmax for the respective drugs.Results:The developed model mimicked two important intrinsic factors of mammary epithelial cells viz. secretory and tight-junction properties and also the passive route of drug transport. The in vitro M/P ratios at reported tmax were 0.23, 0.61, 0.87, and 0.03 respectively, for rifampicin, theophylline, paracetamol, and salicylic acid as compared to 0.29, 0.65, 0.65, and 0.22, respectively, in vitro.Conclusion:Our preliminary effort to develop an in vitro physiological model showed promising results. Transfer rate of the drugs using the developed model compared well with the transfer potential seen in vivo except for salicylic acid, which was transferred in far lower concentration in vitro. The model has a potential to be developed as a non-invasive alternative to the in vitro technique for determining the transfer of therapeutic drugs into breast milk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.